Charles Epstein (mathematician)

Last updated
Charles Epstein
Charles Epstein.png
Born
Pennsylvania, U.S.A.
NationalityAmerican
CitizenshipU.S.A.
Alma mater Massachusetts Institute of Technology
Courant Institute
Awards Sloan Fellowship
Scientific career
FieldsMathematics
Applied Mathematics
Institutions Princeton University
University of Pennsylvania
Doctoral advisor Peter Lax [1]
Other academic advisors William Thurston

Charles L. Epstein is a Senior Research Scientist in the Center for Computational Mathematics at the Flatiron Institute. He is the Thomas A. Scott Professor of Mathematics Emeritus at the University of Pennsylvania, Philadelphia. [2]

Contents

Research areas

Charles Epstein is an analyst and applied mathematician. His research interests include partial differential equations, mathematical physics, boundary value problems, mathematical biology, population genetics, nuclear magnetic resonance and medical imaging, and numerical analysis; he has also worked in hyperbolic geometry, univalent function theory, several complex variables, microlocal analysis and index theory.

Education and career

He was an undergraduate in mathematics at the Massachusetts Institute of Technology and graduate student at the Courant Institute, New York University, where he received his Ph.D. in 1983 under the direction of Peter Lax. [3]

He was a postdoc with William Thurston before moving to the University of Pennsylvania, where he has been since. Epstein won a Sloan Research Fellowship in 1988. [2]

He is currently a Senior Research Scientist in the Center for Computational Mathematics at the Flatiron Institute, New York City, and Thomas A. Scott Professor of Mathematics Emeritus at the University of Pennsylvania, Philadelphia.

Awards and honors

In 2014, Charles Epstein became a Fellow of the American Mathematical Society "for contributions to analysis, geometry, and applied mathematics including medical imaging, as well as for service to the profession". [4] He was a co-recipient of the Stefan Bergman Prize in 2016. [5]

Books

Publications

Related Research Articles

<span class="mw-page-title-main">William Thurston</span> American mathematician (1946–2012)

William Paul Thurston was an American mathematician. He was a pioneer in the field of low-dimensional topology and was awarded the Fields Medal in 1982 for his contributions to the study of 3-manifolds.

Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as smooth manifolds with a Riemannian metric. This gives, in particular, local notions of angle, length of curves, surface area and volume. From those, some other global quantities can be derived by integrating local contributions.

In mathematics, the uniformization theorem states that every simply connected Riemann surface is conformally equivalent to one of three Riemann surfaces: the open unit disk, the complex plane, or the Riemann sphere. The theorem is a generalization of the Riemann mapping theorem from simply connected open subsets of the plane to arbitrary simply connected Riemann surfaces.

<span class="mw-page-title-main">Mikhael Gromov (mathematician)</span> Russian-French mathematician

Mikhael Leonidovich Gromov is a Russian-French mathematician known for his work in geometry, analysis and group theory. He is a permanent member of Institut des Hautes Études Scientifiques in France and a professor of mathematics at New York University.

<span class="mw-page-title-main">Geometric group theory</span> Area in mathematics devoted to the study of finitely generated groups

Geometric group theory is an area in mathematics devoted to the study of finitely generated groups via exploring the connections between algebraic properties of such groups and topological and geometric properties of spaces on which these groups can act non-trivially.

<span class="mw-page-title-main">Simon Donaldson</span> English mathematician

Sir Simon Kirwan Donaldson is an English mathematician known for his work on the topology of smooth (differentiable) four-dimensional manifolds, Donaldson–Thomas theory, and his contributions to Kähler geometry. He is currently a permanent member of the Simons Center for Geometry and Physics at Stony Brook University in New York, and a Professor in Pure Mathematics at Imperial College London.

The Bôcher Memorial Prize was founded by the American Mathematical Society in 1923 in memory of Maxime Bôcher with an initial endowment of $1,450. It is awarded every three years for a notable research work in analysis that has appeared during the past six years. The work must be published in a recognized, peer-reviewed venue. The current award is $5,000.

In mathematics, more precisely in topology and differential geometry, a hyperbolic 3-manifold is a manifold of dimension 3 equipped with a hyperbolic metric, that is a Riemannian metric which has all its sectional curvatures equal to −1. It is generally required that this metric be also complete: in this case the manifold can be realised as a quotient of the 3-dimensional hyperbolic space by a discrete group of isometries.

In mathematics, a CR manifold, or Cauchy–Riemann manifold, is a differentiable manifold together with a geometric structure modeled on that of a real hypersurface in a complex vector space, or more generally modeled on an edge of a wedge.

The Oswald Veblen Prize in Geometry is an award granted by the American Mathematical Society for notable research in geometry or topology. It was funded in 1961 in memory of Oswald Veblen and first issued in 1964. The Veblen Prize is now worth US$5000, and is awarded every three years.

John Willard Morgan is an American mathematician known for his contributions to topology and geometry. He is a Professor Emeritus at Columbia University and a member of the Simons Center for Geometry and Physics at Stony Brook University.

Brian Hayward Bowditch is a British mathematician known for his contributions to geometry and topology, particularly in the areas of geometric group theory and low-dimensional topology. He is also known for solving the angel problem. Bowditch holds a chaired Professor appointment in Mathematics at the University of Warwick.

In mathematics, more precisely in group theory and hyperbolic geometry, Arithmetic Kleinian groups are a special class of Kleinian groups constructed using orders in quaternion algebras. They are particular instances of arithmetic groups. An arithmetic hyperbolic three-manifold is the quotient of hyperbolic space by an arithmetic Kleinian group.

James W. Cannon is an American mathematician working in the areas of low-dimensional topology and geometric group theory. He was an Orson Pratt Professor of Mathematics at Brigham Young University.

Mathematics is a broad subject that is commonly divided in many areas that may be defined by their objects of study, by the used methods, or by both. For example, analytic number theory is a subarea of number theory devoted to the use of methods of analysis for the study of natural numbers.

<span class="mw-page-title-main">Raymond O. Wells Jr.</span> American mathematician

Raymond O'Neil Wells Jr., "Ronny", is an American mathematician, working in complex analysis in several variables as well as wavelets.

Masatake Kuranishi was a Japanese mathematician who worked on several complex variables, partial differential equations, and differential geometry.

Kang-Tae Kim is a South Korean mathematician. He is a professor of mathematics at Pohang University of Science and Technology, and is the head of the Center for Geometric Research at the Center for Leading Research. He is one of executive editors of Complex Analysis and its Synergies, an international journal published by Springer-Verlag.

<span class="mw-page-title-main">Jeffrey Brock</span> American mathematician

Jeffrey Farlowe Brock is an American mathematician, working in low-dimensional geometry and topology. He is known for his contributions to the understanding of hyperbolic 3-manifolds and the geometry of Teichmüller spaces.

Albert Marden is an American mathematician, specializing in complex analysis and hyperbolic geometry.

References