Cheeger constant (graph theory)

Last updated

In mathematics, the Cheeger constant (also Cheeger number or isoperimetric number) of a graph is a numerical measure of whether or not a graph has a "bottleneck". The Cheeger constant as a measure of "bottleneckedness" is of great interest in many areas: for example, constructing well-connected networks of computers, card shuffling. The graph theoretical notion originated after the Cheeger isoperimetric constant of a compact Riemannian manifold.

Contents

The Cheeger constant is named after the mathematician Jeff Cheeger.

Definition

Let G be an undirected finite graph with vertex set V(G) and edge set E(G). For a collection of vertices AV(G), let A denote the collection of all edges going from a vertex in A to a vertex outside of A (sometimes called the edge boundary of A):

Note that the edges are unordered, i.e., . The Cheeger constant of G, denoted h(G), is defined by [1]

The Cheeger constant is strictly positive if and only if G is a connected graph. Intuitively, if the Cheeger constant is small but positive, then there exists a "bottleneck", in the sense that there are two "large" sets of vertices with "few" links (edges) between them. The Cheeger constant is "large" if any possible division of the vertex set into two subsets has "many" links between those two subsets.

Example: computer networking

Ring network layout NetworkTopology-Ring.png
Ring network layout

In applications to theoretical computer science, one wishes to devise network configurations for which the Cheeger constant is high (at least, bounded away from zero) even when |V(G)| (the number of computers in the network) is large.

For example, consider a ring network of N ≥ 3 computers, thought of as a graph GN. Number the computers 1, 2, ..., N clockwise around the ring. Mathematically, the vertex set and the edge set are given by:

Take A to be a collection of of these computers in a connected chain:

So,

and

This example provides an upper bound for the Cheeger constant h(GN), which also tends to zero as N → ∞. Consequently, we would regard a ring network as highly "bottlenecked" for large N, and this is highly undesirable in practical terms. We would only need one of the computers on the ring to fail, and network performance would be greatly reduced. If two non-adjacent computers were to fail, the network would split into two disconnected components.

Cheeger Inequalities

The Cheeger constant is especially important in the context of expander graphs as it is a way to measure the edge expansion of a graph. The so-called Cheeger inequalities relate the eigenvalue gap of a graph with its Cheeger constant. More explicitly

in which is the maximum degree for the nodes in and is the spectral gap of the Laplacian matrix of the graph. [2] The Cheeger inequality is a fundamental result and motivation for spectral graph theory.

See also

Notes

  1. Mohar 1989, pp. 274–291.
  2. Montenegro & Tetali 2006, pp. 237–354.

Related Research Articles

In graph theory, an expander graph is a sparse graph that has strong connectivity properties, quantified using vertex, edge or spectral expansion. Expander constructions have spawned research in pure and applied mathematics, with several applications to complexity theory, design of robust computer networks, and the theory of error-correcting codes.

<span class="mw-page-title-main">Pigeonhole principle</span> If there are more items than boxes holding them, one box must contain at least two items

In mathematics, the pigeonhole principle states that if n items are put into m containers, with n > m, then at least one container must contain more than one item. For example, of three gloves, at least two must be right-handed or at least two must be left-handed, because there are three objects but only two categories of handedness to put them into. This seemingly obvious statement, a type of counting argument, can be used to demonstrate possibly unexpected results. For example, given that the population of London is more than one unit greater than the maximum number of hairs that can be on a human's head, the principle requires that there must be at least two people in London who have the same number of hairs on their heads.

<span class="mw-page-title-main">Floor and ceiling functions</span> Nearest integers from a number

In mathematics, the floor function (or greatest integer function) is the function that takes as input a real number x, and gives as output the greatest integer less than or equal to x, denoted x or floor(x). Similarly, the ceiling function maps x to the smallest integer greater than or equal to x, denoted x or ceil(x).

In mathematics, the Hermite polynomials are a classical orthogonal polynomial sequence.

In computer science, the Akra–Bazzi method, or Akra–Bazzi theorem, is used to analyze the asymptotic behavior of the mathematical recurrences that appear in the analysis of divide and conquer algorithms where the sub-problems have substantially different sizes. It is a generalization of the master theorem for divide-and-conquer recurrences, which assumes that the sub-problems have equal size. It is named after mathematicians Mohamad Akra and Louay Bazzi.

<span class="mw-page-title-main">Turán graph</span> Balanced complete multipartite graph

The Turán graph, denoted by , is a complete multipartite graph; it is formed by partitioning a set of vertices into subsets, with sizes as equal as possible, and then connecting two vertices by an edge if and only if they belong to different subsets. Where and are the quotient and remainder of dividing by , the graph is of the form , and the number of edges is

In graph theory, Turán's theorem bounds the number of edges that can be included in an undirected graph that does not have a complete subgraph of a given size. It is one of the central results of extremal graph theory, an area studying the largest or smallest graphs with given properties, and is a special case of the forbidden subgraph problem on the maximum number of edges in a graph that does not have a given subgraph.

In number theory, a formula for primes is a formula generating the prime numbers, exactly and without exception. Formulas for calculating primes do exist, however, they are computationally very slow. A number of constraints are known, showing what such a "formula" can and cannot be.

In mathematics, spectral graph theory is the study of the properties of a graph in relationship to the characteristic polynomial, eigenvalues, and eigenvectors of matrices associated with the graph, such as its adjacency matrix or Laplacian matrix.

In mathematics, the isoperimetric dimension of a manifold is a notion of dimension that tries to capture how the large-scale behavior of the manifold resembles that of a Euclidean space.

<span class="mw-page-title-main">Triangle-free graph</span> Graph without triples of adjacent vertices

In the mathematical area of graph theory, a triangle-free graph is an undirected graph in which no three vertices form a triangle of edges. Triangle-free graphs may be equivalently defined as graphs with clique number ≤ 2, graphs with girth ≥ 4, graphs with no induced 3-cycle, or locally independent graphs.

<span class="mw-page-title-main">Erdős–Rényi model</span> Two closely related models for generating random graphs

In the mathematical field of graph theory, the Erdős–Rényi model refers to one of two closely related models for generating random graphs or the evolution of a random network. These models are named after Hungarian mathematicians Paul Erdős and Alfréd Rényi, who introduced one of the models in 1959. Edgar Gilbert introduced the other model contemporaneously with and independently of Erdős and Rényi. In the model of Erdős and Rényi, all graphs on a fixed vertex set with a fixed number of edges are equally likely. In the model introduced by Gilbert, also called the Erdős–Rényi–Gilbert model, each edge has a fixed probability of being present or absent, independently of the other edges. These models can be used in the probabilistic method to prove the existence of graphs satisfying various properties, or to provide a rigorous definition of what it means for a property to hold for almost all graphs.

<span class="mw-page-title-main">Random geometric graph</span> In graph theory, the mathematically simplest spatial network

In graph theory, a random geometric graph (RGG) is the mathematically simplest spatial network, namely an undirected graph constructed by randomly placing N nodes in some metric space and connecting two nodes by a link if and only if their distance is in a given range, e.g. smaller than a certain neighborhood radius, r.

<span class="mw-page-title-main">Conductance (graph theory)</span> A mixing property of Markov chains and graphs

In theoretical computer science, graph theory, and mathematics, the conductance is a parameter of a Markov chain that is closely tied to its mixing time, that is, how rapidly the chain converges to its stationary distribution, should it exist. Equivalently, the conductance can be viewed as a parameter of a directed graph, in which case it can be used to analyze how quickly random walks in the graph converge.

<span class="mw-page-title-main">Crossing number (graph theory)</span> Fewest edge crossings in drawing of a graph

In graph theory, the crossing numbercr(G) of a graph G is the lowest number of edge crossings of a plane drawing of the graph G. For instance, a graph is planar if and only if its crossing number is zero. Determining the crossing number continues to be of great importance in graph drawing, as user studies have shown that drawing graphs with few crossings makes it easier for people to understand the drawing.

<span class="mw-page-title-main">Strength of a graph</span> Graph-theoretic connectivity parameter

In graph theory, the strength of an undirected graph corresponds to the minimum ratio edges removed/components created in a decomposition of the graph in question. It is a method to compute partitions of the set of vertices and detect zones of high concentration of edges, and is analogous to graph toughness which is defined similarly for vertex removal.

In the mathematical discipline of graph theory, Shannon multigraphs, named after Claude Shannon by Vizing (1965), are a special type of triangle graphs, which are used in the field of edge coloring in particular.

<span class="mw-page-title-main">Graphon</span>

In graph theory and statistics, a graphon is a symmetric measurable function , that is important in the study of dense graphs. Graphons arise both as a natural notion for the limit of a sequence of dense graphs, and as the fundamental defining objects of exchangeable random graph models. Graphons are tied to dense graphs by the following pair of observations: the random graph models defined by graphons give rise to dense graphs almost surely, and, by the regularity lemma, graphons capture the structure of arbitrary large dense graphs.

In the mathematical field of graph theory, the intersection number of a graph is the smallest number of elements in a representation of as an intersection graph of finite sets. In such a representation, each vertex is represented as a set, and two vertices are connected by an edge whenever their sets have a common element. Equivalently, the intersection number is the smallest number of cliques needed to cover all of the edges of .

The method of (hypergraph) containers is a powerful tool that can help characterize the typical structure and/or answer extremal questions about families of discrete objects with a prescribed set of local constraints. Such questions arise naturally in extremal graph theory, additive combinatorics, discrete geometry, coding theory, and Ramsey theory; they include some of the most classical problems in the associated fields.

References