Conductance (graph theory)

Last updated
An undirected graph G and a few example cuts with the corresponding conductances Graph conductance.svg
An undirected graph G and a few example cuts with the corresponding conductances

In theoretical computer science, graph theory, and mathematics, the conductance is a parameter of a Markov chain that is closely tied to its mixing time, that is, how rapidly the chain converges to its stationary distribution, should it exist. Equivalently, the conductance can be viewed as a parameter of a directed graph, in which case it can be used to analyze how quickly random walks in the graph converge.

Contents

The conductance of a graph is closely related to the Cheeger constant of the graph, which is also known as the edge expansion or the isoperimetic number. However, due to subtly different definitions, the conductance and the edge expansion do not generally coincide if the graphs are not regular. On the other hand, the notion of electrical conductance that appears in electrical networks is unrelated to the conductance of a graph.

History

The conductance was first defined by Mark Jerrum and Alistair Sinclair in 1988 to prove that the permanent of a matrix with entries from {0,1} has a polynomial-time approximation scheme. [1] In the proof, Jerrum and Sinclair studied the Markov chain that switches between perfect and near-perfect matchings in bipartite graphs by adding or removing individual edges. They defined and used the conductance to prove that this Markov chain is rapidly mixing. This means that, after running the Markov chain for a polynomial number of steps, the resulting distribution is guaranteed to be close to the stationary distribution, which in this case is the uniform distribution on the set of all perfect and near-perfect matchings. This rapidly mixing Markov chain makes it possible in polynomial time to draw approximately uniform random samples from the set of all perfect matchings in the bipartite graph, which in turn gives rise to the polynomial-time approximation scheme for computing the permanent.

Definition

For undirected d-regular graphs without edge weights, the conductance is equal to the Cheeger constant divided by d, that is, we have .

More generally, let be a directed graph with vertices, vertex set , edge set , and real weights on each edge . Let be any vertex subset. The conductance of the cut is defined via

where

and so is the total weight of all edges that are crossing the cut from to and

is the volume of , that is, the total weight of all edges that start at . If equals , then also equals and is defined as . The conductance of the graph is now defined as the minimum conductance over all possible cuts:

Equivalently, the conductance satisfies

Generalizations and applications

In practical applications, one often considers the conductance only over a cut. A common generalization of conductance is to handle the case of weights assigned to the edges: then the weights are added; if the weight is in the form of a resistance, then the reciprocal weights are added.

The notion of conductance underpins the study of percolation in physics and other applied areas; thus, for example, the permeability of petroleum through porous rock can be modeled in terms of the conductance of a graph, with weights given by pore sizes.

Conductance also helps measure the quality of a Spectral clustering. The maximum among the conductance of clusters provides a bound which can be used, along with inter-cluster edge weight, to define a measure on the quality of clustering. Intuitively, the conductance of a cluster (which can be seen as a set of vertices in a graph) should be low. Apart from this, the conductance of the subgraph induced by a cluster (called "internal conductance") can be used as well.

Markov chains

For an ergodic reversible Markov chain with an underlying graph G, the conductance is a way to measure how hard it is to leave a small set of nodes. Formally, the conductance of a graph is defined as the minimum over all sets of the capacity of divided by the ergodic flow out of . Alistair Sinclair showed that conductance is closely tied to mixing time in ergodic reversible Markov chains. We can also view conductance in a more probabilistic way, as the probability of leaving a set of nodes given that we started in that set to begin with. This may also be written as

where is the stationary distribution of the chain. In some literature, this quantity is also called the bottleneck ratio of G.

Conductance is related to Markov chain mixing time in the reversible setting. Precisely, for any irreducible, reversible Markov Chain with self loop probabilities for all states and an initial state ,

.

See also

Notes

  1. Jerrum & Sinclair 1988, pp. 235–244.

Related Research Articles

In integral calculus, an elliptic integral is one of a number of related functions defined as the value of certain integrals, which were first studied by Giulio Fagnano and Leonhard Euler. Their name originates from their originally arising in connection with the problem of finding the arc length of an ellipse.

<span class="mw-page-title-main">Spherical coordinate system</span> Coordinates comprising a distance and two angles

In mathematics, a spherical coordinate system is a coordinate system for three-dimensional space where the position of a given point in space is specified by three numbers, : the radial distance of the radial liner connecting the point to the fixed point of origin ; the polar angle θ of the radial line r; and the azimuthal angle φ of the radial line r.

<span class="mw-page-title-main">Cauchy's integral formula</span> Provides integral formulas for all derivatives of a holomorphic function

In mathematics, Cauchy's integral formula, named after Augustin-Louis Cauchy, is a central statement in complex analysis. It expresses the fact that a holomorphic function defined on a disk is completely determined by its values on the boundary of the disk, and it provides integral formulas for all derivatives of a holomorphic function. Cauchy's formula shows that, in complex analysis, "differentiation is equivalent to integration": complex differentiation, like integration, behaves well under uniform limits – a result that does not hold in real analysis.

<span class="mw-page-title-main">Ellipsoid</span> Quadric surface that looks like a deformed sphere

An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.

<span class="mw-page-title-main">Cylindrical coordinate system</span> 3-dimensional coordinate system

A cylindrical coordinate system is a three-dimensional coordinate system that specifies point positions by the distance from a chosen reference axis (axis L in the image opposite), the direction from the axis relative to a chosen reference direction (axis A), and the distance from a chosen reference plane perpendicular to the axis (plane containing the purple section). The latter distance is given as a positive or negative number depending on which side of the reference plane faces the point.

<span class="mw-page-title-main">Dihedral angle</span> Angle between two planes in space

A dihedral angle is the angle between two intersecting planes or half-planes. In chemistry, it is the clockwise angle between half-planes through two sets of three atoms, having two atoms in common. In solid geometry, it is defined as the union of a line and two half-planes that have this line as a common edge. In higher dimensions, a dihedral angle represents the angle between two hyperplanes. The planes of a flying machine are said to be at positive dihedral angle when both starboard and port main planes are upwardly inclined to the lateral axis; when downwardly inclined they are said to be at a negative dihedral angle.

In probability theory, the Borel–Kolmogorov paradox is a paradox relating to conditional probability with respect to an event of probability zero. It is named after Émile Borel and Andrey Kolmogorov.

<span class="mw-page-title-main">Stellar dynamics</span>

Stellar dynamics is the branch of astrophysics which describes in a statistical way the collective motions of stars subject to their mutual gravity. The essential difference from celestial mechanics is that the number of body

A continuous-time Markov chain (CTMC) is a continuous stochastic process in which, for each state, the process will change state according to an exponential random variable and then move to a different state as specified by the probabilities of a stochastic matrix. An equivalent formulation describes the process as changing state according to the least value of a set of exponential random variables, one for each possible state it can move to, with the parameters determined by the current state.

<span class="mw-page-title-main">Viviani's curve</span> Figure-eight shaped curve on a sphere

In mathematics, Viviani's curve, also known as Viviani's window, is a figure eight shaped space curve named after the Italian mathematician Vincenzo Viviani. It is the intersection of a sphere with a cylinder that is tangent to the sphere and passes through two poles of the sphere. Before Viviani this curve was studied by Simon de La Loubère and Gilles de Roberval.

<span class="mw-page-title-main">Multiple integral</span> Generalization of definite integrals to functions of multiple variables

In mathematics (specifically multivariable calculus), a multiple integral is a definite integral of a function of several real variables, for instance, f(x, y) or f(x, y, z).

In mathematics, subharmonic and superharmonic functions are important classes of functions used extensively in partial differential equations, complex analysis and potential theory.

In mathematics, the Cheeger bound is a bound of the second largest eigenvalue of the transition matrix of a finite-state, discrete-time, reversible stationary Markov chain. It can be seen as a special case of Cheeger inequalities in expander graphs.

In probability theory, the mixing time of a Markov chain is the time until the Markov chain is "close" to its steady state distribution.

In mathematics, the Fortuin–Kasteleyn–Ginibre (FKG) inequality is a correlation inequality, a fundamental tool in statistical mechanics and probabilistic combinatorics, due to Cees M. Fortuin, Pieter W. Kasteleyn, and Jean Ginibre. Informally, it says that in many random systems, increasing events are positively correlated, while an increasing and a decreasing event are negatively correlated. It was obtained by studying the random cluster model.

In mathematics, the ATS theorem is the theorem on the approximation of a trigonometric sum by a shorter one. The application of the ATS theorem in certain problems of mathematical and theoretical physics can be very helpful.

<span class="mw-page-title-main">Spherinder</span> Geometric object

In four-dimensional geometry, the spherinder, or spherical cylinder or spherical prism, is a geometric object, defined as the Cartesian product of a 3-ball of radius r1 and a line segment of length 2r2:

In machine learning, the kernel embedding of distributions comprises a class of nonparametric methods in which a probability distribution is represented as an element of a reproducing kernel Hilbert space (RKHS). A generalization of the individual data-point feature mapping done in classical kernel methods, the embedding of distributions into infinite-dimensional feature spaces can preserve all of the statistical features of arbitrary distributions, while allowing one to compare and manipulate distributions using Hilbert space operations such as inner products, distances, projections, linear transformations, and spectral analysis. This learning framework is very general and can be applied to distributions over any space on which a sensible kernel function may be defined. For example, various kernels have been proposed for learning from data which are: vectors in , discrete classes/categories, strings, graphs/networks, images, time series, manifolds, dynamical systems, and other structured objects. The theory behind kernel embeddings of distributions has been primarily developed by Alex Smola, Le Song , Arthur Gretton, and Bernhard Schölkopf. A review of recent works on kernel embedding of distributions can be found in.

Approximate max-flow min-cut theorems are mathematical propositions in network flow theory. Approximate max-flow min-cut theorems deal with the relationship between maximum flow rate ("max-flow") and minimum cut ("min-cut") in a multi-commodity flow problem. The theorems have enabled the development of approximation algorithms for use in graph partition and related problems.

In astrophysics, Chandrasekhar's white dwarf equation is an initial value ordinary differential equation introduced by the Indian American astrophysicist Subrahmanyan Chandrasekhar, in his study of the gravitational potential of completely degenerate white dwarf stars. The equation reads as

References