Chessboard complex

Last updated

A chessboard complex is a particular kind of abstract simplicial complex, which has various applications in topological graph theory and algebraic topology. [1] [2] Informally, the (m, n)-chessboard complex contains all sets of positions on an m-by-n chessboard, where rooks can be placed without attacking each other. Equivalently, it is the matching complex of the (m, n)-complete bipartite graph, or the independence complex of the m-by-n rook's graph.

Contents

Definitions

For any two positive integers m and n, the (m, n)-chessboard complex is the abstract simplicial complex with vertex set that contains all subsets S such that, if and are two distinct elements of S, then both and . The vertex set can be viewed as a two-dimensional grid (a "chessboard"), and the complex contains all subsets S that do not contain two cells in the same row or in the same column. In other words, all subset S such that rooks can be placed on them without taking each other.

The chessboard complex can also be defined succinctly using deleted join. Let Dm be a set of m discrete points. Then the chessboard complex is the n-fold 2-wise deleted join of Dm, denoted by . [3] :176

Another definition is the set of all matchings in the complete bipartite graph Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): K_{m,n}. [1]

Examples

In any (m,n)-chessboard complex, the neighborhood of each vertex has the structure of a (m 1,n 1)-chessboard complex. In terms of chess rooks, placing one rook on the board eliminates the remaining squares in the same row and column, leaving a smaller set of rows and columns where additional rooks can be placed. This allows the topological structure of a chessboard to be studied hierarchically, based on its lower-dimensional structures. An example of this occurs with the (4,5)-chessboard complex, and the (3,4)- and (2,3)-chessboard complexes within it: [4]

Properties

Every facet of contains elements. Therefore, the dimension of is .

The homotopical connectivity of the chessboard complex is at least (so ). [1] :Sec.1

The Betti numbers of chessboard complexes are zero if and only if . [5] :200 The eigenvalues of the combinatorial Laplacians of the chessboard complex are integers. [5] :193

The chessboard complex is -connected, where . [6] :527 The homology group is a 3-group of exponent at most 9, and is known to be exactly the cyclic group on 3 elements when . [6] :543–555

The -skeleton of chessboard complex is vertex decomposable in the sense of Provan and Billera (and thus shellable), and the entire complex is vertex decomposable if . [7] :3 As a corollary, any position of k rooks on a m-by-n chessboard, where , can be transformed into any other position using at most single-rook moves (where each intermediate position is also not rook-taking). [7] :3

Generalizations

The complex is a "chessboard complex" defined for a k-dimensional chessboard. Equivalently, it is the set of matchings in a complete k-partite hypergraph. This complex is at least -connected, for [1] :33

Related Research Articles

<span class="mw-page-title-main">Feynman diagram</span> Pictorial representation of the behavior of subatomic particles

In theoretical physics, a Feynman diagram is a pictorial representation of the mathematical expressions describing the behavior and interaction of subatomic particles. The scheme is named after American physicist Richard Feynman, who introduced the diagrams in 1948. The interaction of subatomic particles can be complex and difficult to understand; Feynman diagrams give a simple visualization of what would otherwise be an arcane and abstract formula. According to David Kaiser, "Since the middle of the 20th century, theoretical physicists have increasingly turned to this tool to help them undertake critical calculations. Feynman diagrams have revolutionized nearly every aspect of theoretical physics." While the diagrams are applied primarily to quantum field theory, they can also be used in other areas of physics, such as solid-state theory. Frank Wilczek wrote that the calculations that won him the 2004 Nobel Prize in Physics "would have been literally unthinkable without Feynman diagrams, as would [Wilczek's] calculations that established a route to production and observation of the Higgs particle."

In mathematics, the Kronecker delta is a function of two variables, usually just non-negative integers. The function is 1 if the variables are equal, and 0 otherwise:

The theory of functions of several complex variables is the branch of mathematics dealing with functions defined on the complex coordinate space , that is, n-tuples of complex numbers. The name of the field dealing with the properties of these functions is called several complex variables, which the Mathematics Subject Classification has as a top-level heading.

A conformal field theory (CFT) is a quantum field theory that is invariant under conformal transformations. In two dimensions, there is an infinite-dimensional algebra of local conformal transformations, and conformal field theories can sometimes be exactly solved or classified.

<span class="mw-page-title-main">Abstract simplicial complex</span> Mathematical object

In combinatorics, an abstract simplicial complex (ASC), often called an abstract complex or just a complex, is a family of sets that is closed under taking subsets, i.e., every subset of a set in the family is also in the family. It is a purely combinatorial description of the geometric notion of a simplicial complex. For example, in a 2-dimensional simplicial complex, the sets in the family are the triangles, their edges, and their vertices.

In combinatorics, a Sperner family, or clutter, is a family F of subsets of a finite set E in which none of the sets contains another. Equivalently, a Sperner family is an antichain in the inclusion lattice over the power set of E. A Sperner family is also sometimes called an independent system or irredundant set.

<span class="mw-page-title-main">Solenoid (mathematics)</span> Class of compact connected topological spaces

In mathematics, a solenoid is a compact connected topological space that may be obtained as the inverse limit of an inverse system of topological groups and continuous homomorphisms

In theoretical physics, the superconformal algebra is a graded Lie algebra or superalgebra that combines the conformal algebra and supersymmetry. In two dimensions, the superconformal algebra is infinite-dimensional. In higher dimensions, superconformal algebras are finite-dimensional and generate the superconformal group.

In theoretical physics, scalar field theory can refer to a relativistically invariant classical or quantum theory of scalar fields. A scalar field is invariant under any Lorentz transformation.

<span class="mw-page-title-main">Rook's graph</span> Graph of chess rook moves

In graph theory, a rook's graph is an undirected graph that represents all legal moves of the rook chess piece on a chessboard. Each vertex of a rook's graph represents a square on a chessboard, and there is an edge between any two squares sharing a row (rank) or column (file), the squares that a rook can move between. These graphs can be constructed for chessboards of any rectangular shape. Although rook's graphs have only minor significance in chess lore, they are more important in the abstract mathematics of graphs through their alternative constructions: rook's graphs are the Cartesian product of two complete graphs, and are the line graphs of complete bipartite graphs. The square rook's graphs constitute the two-dimensional Hamming graphs.

<span class="mw-page-title-main">Triangle-free graph</span> Graph without triples of adjacent vertices

In the mathematical area of graph theory, a triangle-free graph is an undirected graph in which no three vertices form a triangle of edges. Triangle-free graphs may be equivalently defined as graphs with clique number ≤ 2, graphs with girth ≥ 4, graphs with no induced 3-cycle, or locally independent graphs.

In mathematics, the Cheeger constant of a graph is a numerical measure of whether or not a graph has a "bottleneck". The Cheeger constant as a measure of "bottleneckedness" is of great interest in many areas: for example, constructing well-connected networks of computers, card shuffling. The graph theoretical notion originated after the Cheeger isoperimetric constant of a compact Riemannian manifold.

<span class="mw-page-title-main">Clique complex</span> Abstract simplicial complex describing a graphs cliques

Clique complexes, independence complexes, flag complexes, Whitney complexes and conformal hypergraphs are closely related mathematical objects in graph theory and geometric topology that each describe the cliques of an undirected graph.

In the mathematical discipline of graph theory, Shannon multigraphs, named after Claude Shannon by Vizing (1965), are a special type of triangle graphs, which are used in the field of edge coloring in particular.

<span class="mw-page-title-main">Telephone number (mathematics)</span> Number of ways to pair up n objects

In mathematics, the telephone numbers or the involution numbers form a sequence of integers that count the ways n people can be connected by person-to-person telephone calls. These numbers also describe the number of matchings of a complete graph on n vertices, the number of permutations on n elements that are involutions, the sum of absolute values of coefficients of the Hermite polynomials, the number of standard Young tableaux with n cells, and the sum of the degrees of the irreducible representations of the symmetric group. Involution numbers were first studied in 1800 by Heinrich August Rothe, who gave a recurrence equation by which they may be calculated, giving the values

In mathematics, Legendre's formula gives an expression for the exponent of the largest power of a prime p that divides the factorial n!. It is named after Adrien-Marie Legendre. It is also sometimes known as de Polignac's formula, after Alphonse de Polignac.

In graph theory, a matching in a hypergraph is a set of hyperedges, in which every two hyperedges are disjoint. It is an extension of the notion of matching in a graph.

A central problem in algorithmic graph theory is the shortest path problem. One of the generalizations of the shortest path problem is known as the single-source-shortest-paths (SSSP) problem, which consists of finding the shortest paths from a source vertex to all other vertices in the graph. There are classical sequential algorithms which solve this problem, such as Dijkstra's algorithm. In this article, however, we present two parallel algorithms solving this problem.

In graph theory, Meshulam's game is a game used to explain a theorem of Roy Meshulam related to the homological connectivity of the independence complex of a graph, which is the smallest index k such that all reduced homological groups up to and including k are trivial. The formulation of this theorem as a game is due to Aharoni, Berger and Ziv.

In mathematics, a queen's graph is an undirected graph that represents all legal moves of the queen—a chess piece—on a chessboard. In the graph, each vertex represents a square on a chessboard, and each edge is a legal move the queen can make, that is, a horizontal, vertical or diagonal move by any number of squares. If the chessboard has dimensions , then the induced graph is called the queen's graph.

References

  1. 1 2 3 4 Björner, A.; Lovász, L.; Vrećica, S. T.; Živaljević, R. T. (1994-02-01). "Chessboard Complexes and Matching Complexes". Journal of the London Mathematical Society. 49 (1): 25–39. doi:10.1112/jlms/49.1.25.
  2. Vrećica, Siniša T.; Živaljević, Rade T. (2011-10-01). "Chessboard complexes indomitable". Journal of Combinatorial Theory . Series A. 118 (7): 2157–2166. arXiv: 0911.3512 . doi: 10.1016/j.jcta.2011.04.007 . ISSN   0097-3165.
  3. Matoušek, Jiří (2007). Using the Borsuk-Ulam Theorem: Lectures on Topological Methods in Combinatorics and Geometry (2nd ed.). Berlin-Heidelberg: Springer-Verlag. ISBN   978-3-540-00362-5. Written in cooperation with Anders Björner and Günter M. Ziegler
  4. Goerner, Matthias Rolf Dietrich (2011). "1.2.2 Relationship to the 4 × 5 Chessboard Complex". Visualizing Regular Tessellations: Principal Congruence Links and Equivariant Morphisms from Surfaces to 3-Manifolds (PDF) (Doctoral dissertation). University of California, Berkeley.
  5. 1 2 Friedman, Joel; Hanlon, Phil (1998-09-01). "On the Betti Numbers of Chessboard Complexes". Journal of Algebraic Combinatorics. 8 (2): 193–203. doi:10.1023/A:1008693929682. hdl: 2027.42/46302 . ISSN   1572-9192.
  6. 1 2 Shareshian, John; Wachs, Michelle L. (2007-07-10). "Torsion in the matching complex and chessboard complex". Advances in Mathematics . 212 (2): 525–570. arXiv: math/0409054 . doi: 10.1016/j.aim.2006.10.014 . ISSN   0001-8708.
  7. 1 2 Ziegler, Günter M. (1992-09-23). "Shellability of Chessboard Complexes".