Chicago Air Shower Array

Last updated
Chicago Air Shower Array
Location(s) Utah
Coordinates 40°12′N112°48′W / 40.2°N 112.8°W / 40.2; -112.8 OOjs UI icon edit-ltr-progressive.svg
OrganizationUniversity of Chicago
Altitude1450 m
Wavelength Ultra high energy (E> 100 TeV)
Built1988–1991
Collecting area235,000 square-meters
Usa edcp relief location map.png
Red pog.svg
Location of Chicago Air Shower Array

The Chicago Air Shower Array (CASA) was a significant ultra high high-energy astrophysics experiment operating in the 1990s. It consisted of a very large array of scintillation detectors located at Dugway Proving Grounds in Utah, USA, approximately 80 kilometers southwest of Salt Lake City. The full CASA detector, consisting of 1089 detectors began operating in 1992 in conjunction with a second instrument, the Michigan Muon Array (MIA), under the name CASA-MIA. MIA was made of 2500 square meters of buried muon detectors. At the time of its operation, CASA-MIA was the most sensitive experiment built to date in the study of gamma ray and cosmic ray interactions at energies above 100 TeV (1014 electronvolts). Research topics on data from this experiment covered a wide variety of physics issues, including the search for gamma rays from Galactic sources (especially the Crab Nebula and the X-ray binaries Cygnus X-3 and Hercules X-1) and extragalactic sources (active Galactic nuclei and gamma-ray bursts), the study of diffuse gamma-ray emission (an isotropic component or from the Galactic plane), and measurements of the cosmic ray composition in the region from 100 to 100,000 TeV. For the topic of composition, CASA-MIA worked in conjunction with several other experiments at the same site: the Broad Laterial Non-imaging Cherenkov Array (BLANCA), the Dual Imaging Cherenkov Experiment (DICE) and the Fly's Eye HiRes prototype experiment. CASA-MIA operated continuously between 1992 and 1999. In summer 1999, it was decommissioned.

Contents

Specifications and design

Plan view of the CASA-MIA detectors at Dugway Proving Grounds in Utah, USA. CASA consisted of 1089 scintillation detectors on a square 15 m x 15 m grid. MIA consisted of 1024 scintillation counters arranged in 16 patches. Five small Cherenkov telescopes were co-located at the site and used for angular alignment. CASA-MIA.png
Plan view of the CASA-MIA detectors at Dugway Proving Grounds in Utah, USA. CASA consisted of 1089 scintillation detectors on a square 15 m x 15 m grid. MIA consisted of 1024 scintillation counters arranged in 16 patches. Five small Cherenkov telescopes were co-located at the site and used for angular alignment.

CASA was built to study the possibility of astrophysical sources of ultra high energy (UHE, E > 100 TeV) gamma-ray emission (see Science below). Gamma rays at these energies interact in the Earth's atmosphere to create an extensive air shower that propagates to the Earth's surface. At the surface, the shower consists predominantly of electrons/positrons, low-energy gamma rays, muons, and some hadrons, with a typical footprint on the ground of 50–100 m. (There is also a component of Cherenkov radiation reaching the ground that can be recorded by imaging atmospheric Cherenkov telescopes). An air shower array is a distributed set of particle detectors (scintillation detector, water Cherenkov detectors, etc.) spread out on the ground to record the passage of the shower particles. The primary particle direction is estimated from the relative arrival time of the shower hitting each detector; the primary particle energy is estimated from the number of particles recorded in each detector and from the lateral distribution of those measurements.

Aerial view of the Chicago Air Shower Array (CASA) and associated detectors at Dugway Proving Grounds, Utah, USA. The CASA scintillation detectors are the white square boxes laid out on a 15-meter grid spacing. At the center of the array (left of center in this image) is the Fly's Eye II detector. Casa-aerial-2.jpg
Aerial view of the Chicago Air Shower Array (CASA) and associated detectors at Dugway Proving Grounds, Utah, USA. The CASA scintillation detectors are the white square boxes laid out on a 15-meter grid spacing. At the center of the array (left of center in this image) is the Fly's Eye II detector.

Prior to CASA, air shower arrays were typically modest in size, typically consisting of 50-100 detectors covering an area of around 50,000 square meters. The plan for CASA was to build a much more sensitive experiment that would be much larger in size, use state-of-the-art electronics, and be coupled with a large array of muon detectors (MIA). [1] The expectation was that showers initiated by gamma rays would contain far fewer muons compared to showers initiated by cosmic rays. [2] The original plan was for an array of 1064 detectors, [3] but the number was subsequently increased to 1089. [4]

Some of the key design features CASA-MIA were the following: [5]

The trigger and data-acquisition sequence for CASA was complex because of the distributed electronics; it worked as follows: [5]

CASA, and its associated muon array MIA, achieved excellent performance and was the state-of-the-art in air shower experiments in the ultra high energy band for a considerable period of time after its operational period in the 1990s. Only in the late 2010s have experiments such as the Tibet Air Shower Array and the High Altitude Water Cherenkov Experiment surpassed CASA-MIA in sensitivity at energies above 100 TeV. The median gamma-ray energy for a source passing near zenith was 115 TeV. The gamma-ray angular resolution varied with the size (number of particles) in the detected shower and was approximately 0.7 degrees for showers with the median number of particles, improving to 0.25 degrees at higher energies. [5] The muon array provided important capability to reject background cosmic ray events; at the median energy of 115 TeV, the fraction of cosmic ray events passing the muon selection criteria for gamma rays was 0.06 (i.e. approximately 17 cosmic ray events were rejected for each one accepted). At higher energies, the background rejection power was significantly increased; for example, at a median energy of 5,000 TeV, the fraction of cosmic rays passing muon selection criteria was reduced to approximately 0.0001.

History

The scientific motivation for CASA came from intriguing results from several experiments in the 1980s. These experiments reported excess air shower events from the direction of two well-known Galactic X-ray binary sources: Cygnus X-3 and Hercules X-1. In 1983, the Kiel and Haverah Park experiments reported an excess of events from the direction of Cygnus X-3, where the arrival times of the events appeared to be modulated by the 4.8-hour orbital periodicity of the binary source. [6] [7] The statistical significance of each signal was weak (around four standard deviations above background), but the results implied that Cygnus X-3 was a luminous emitter of ultra high energy gamma rays and that, in order to do so, it must be a very efficient accelerator of high energy cosmic rays and hence it could provide a large fraction of the pervading flux of cosmic ray particles in our Galaxy.

After these results, a number of groups around the world began designing, or improving, air shower arrays to make follow-up studies. One of these groups was from the University of Chicago,led by James Cronin. Cronin's idea was to build a definitive experiment that could easily verify, or refute, the results on Cygnus X-3. [1] The experiment would be much larger (and much more sensitive) than the Kiel or Haverah Park experiments and it would use a large array of muon detectors to reject the background of hadronic cosmic ray events (i.e. protons and nuclei). (Showers initiated by gamma-ray primaries are expected to have far fewer muons than those initiated by cosmic ray primaries). Cronin assembled a team of scientists (discussed in Collaboration) to develop and construct CASA. The University of Chicago group was partnered with groups from the University of Michigan and the University of Utah, who had already constructed a muon array and smaller air shower array, and the site for CASA would be on Dugway Proving Grounds.

The construction and deployment of CASA took place between 1988 and 1991. Construction activities were carried out at the University of Chicago in the Accelerator Building of the Enrico Fermi Institute. The completed scintillation detectors, along with electronics, were shipped to Utah in large semi-trailers, where they were installed by students, postdocs and faculty. An initial array of 49 detectors became operational in 1989, followed by a 529-detector array in 1990. Standard science operation of the full 1089-detector CASA array (along with the 1024-counter muon array) started in December 1991. CASA operated very successfully, largely without interruption, until 1997. During that time a total of approximately 3 billion air showers events were recorded. Partial operations continued for several more years, in conjunction with the BLANCA and DICE experiments. The various experiments at the site, including CASA, ceased operation in 1999.

Science

The scientific results from CASA-MIA encompassed a dozen scientific publications and covered topics in three broad areas of high-energy astrophysics: gamma-ray point sources, diffuse gamma-ray sources, and cosmic ray physics.

Scientific collaborations

The CASA project was conceived by James W. Cronin and the design and construction were carried out by a team of scientists, engineers and technicians in the Enrico Fermi Institute of the University of Chicago (see [1] for more details). The initial core group of scientists consisted of Cronin, postdoctoral fellows Kenneth Gibbs, Brian Newport, Rene Ong, and Leslie Rosenberg, and graduate students Nicholas Mascarenhas, Hans Krimm and Timothy McKay. During the operational phase of CASA, the Chicago group included postdoctoral fellows Mark Chantell, Corbin Covault, Brian Fick and Lucy Fortson, Kevin Green, and graduate students Alexandre Borione, Joseph Fowler and Scott Oser. The Michigan Muon Array was constructed by a team of researchers from the University of Michigan, including James Matthews, David Nitz, Daniel Sinclair, and John van der Velde, post-doc Kevin Green, and graduate students Mike Catanese and Ande Kennedy Glasmacher.

See also

Related Research Articles

<span class="mw-page-title-main">Cosmic ray</span> High-energy particle, mainly originating outside the Solar system

Cosmic rays or astroparticles are high-energy particles or clusters of particles that move through space at nearly the speed of light. They originate from the Sun, from outside of the Solar System in our own galaxy, and from distant galaxies. Upon impact with Earth's atmosphere, cosmic rays produce showers of secondary particles, some of which reach the surface, although the bulk are deflected off into space by the magnetosphere or the heliosphere.

<span class="mw-page-title-main">MAGIC (telescope)</span>

MAGIC is a system of two Imaging Atmospheric Cherenkov telescopes situated at the Roque de los Muchachos Observatory on La Palma, one of the Canary Islands, at about 2200 m above sea level. MAGIC detects particle showers released by gamma rays, using the Cherenkov radiation, i.e., faint light radiated by the charged particles in the showers. With a diameter of 17 meters for the reflecting surface, it was the largest in the world before the construction of H.E.S.S. II.

<span class="mw-page-title-main">HEGRA</span>

HEGRA, which stands for High-Energy-Gamma-Ray Astronomy, was an atmospheric Cherenkov telescope for Gamma-ray astronomy. With its various types of detectors, HEGRA took data between 1987 and 2002, at which point it was dismantled in order to build its successor, MAGIC, at the same site.

<span class="mw-page-title-main">Air shower (physics)</span> Cascade of atmospheric subatomic particles

Air showers are extensive cascades of subatomic particles and ionized nuclei, produced in the atmosphere when a primary cosmic ray enters the atmosphere. When a particle of the cosmic radiation, which could be a proton, a nucleus, an electron, a photon, or (rarely) a positron, interacts with the nucleus of a molecule in the atmosphere, it produces a vast number of secondary particles, which make up the shower. In the first interactions of the cascade especially hadrons are produced and decay rapidly in the air, producing other particles and electromagnetic radiation, which are part of the shower components. Depending on the energy of the cosmic ray, the detectable size of the shower can reach several kilometers in diameter.

The High Resolution Fly's Eye or HiRes detector was an ultra-high-energy cosmic ray observatory that operated in the West Desert of Utah from May 1997 until April 2006. HiRes used the "atmospheric fluorescence" technique that was pioneered by the Utah group first in tests at the Volcano Ranch experiment and then with the original Fly's Eye experiment. The experiment first ran as the HiRes prototype in a tower configuration operating in conjunction with the CASA and MIA. The prototype was later reconfigured to view 360 degrees in azimuth. HiRes-II followed later and was located on a hilltop about 13km away. HiRes-I and HiRes-II operated in stereo.

<span class="mw-page-title-main">Pierre Auger Observatory</span> International cosmic ray observatory in Argentina

The Pierre Auger Observatory is an international cosmic ray observatory in Argentina designed to detect ultra-high-energy cosmic rays: sub-atomic particles traveling nearly at the speed of light and each with energies beyond 1018 eV. In Earth's atmosphere such particles interact with air nuclei and produce various other particles. These effect particles (called an "air shower") can be detected and measured. But since these high energy particles have an estimated arrival rate of just 1 per km2 per century, the Auger Observatory has created a detection area of 3,000 km2 (1,200 sq mi)—the size of Rhode Island, or Luxembourg—in order to record a large number of these events. It is located in the western Mendoza Province, Argentina, near the Andes.

<span class="mw-page-title-main">IceCube Neutrino Observatory</span> Neutrino detector at the South Pole

The IceCube Neutrino Observatory is a neutrino observatory constructed at the Amundsen–Scott South Pole Station in Antarctica. The project is a recognized CERN experiment (RE10). Its thousands of sensors are located under the Antarctic ice, distributed over a cubic kilometre.

In particle physics, a shower is a cascade of secondary particles produced as the result of a high-energy particle interacting with dense matter. The incoming particle interacts, producing multiple new particles with lesser energy; each of these then interacts, in the same way, a process that continues until many thousands, millions, or even billions of low-energy particles are produced. These are then stopped in the matter and absorbed.

<span class="mw-page-title-main">IACT</span> Device to detect very-high-energy gamma ray photons

IACT stands for imaging atmosphericCherenkov telescope or technique. It is a device or method to detect very-high-energy gamma ray photons in the photon energy range of 50 GeV to 50 TeV.

<span class="mw-page-title-main">Neutrino detector</span> Physics apparatus which is designed to study neutrinos

A neutrino detector is a physics apparatus which is designed to study neutrinos. Because neutrinos only weakly interact with other particles of matter, neutrino detectors must be very large to detect a significant number of neutrinos. Neutrino detectors are often built underground, to isolate the detector from cosmic rays and other background radiation. The field of neutrino astronomy is still very much in its infancy – the only confirmed extraterrestrial sources as of 2018 are the Sun and the supernova 1987A in the nearby Large Magellanic Cloud. Another likely source is the blazar TXS 0506+056 about 3.7 billion light years away. Neutrino observatories will "give astronomers fresh eyes with which to study the universe".

<span class="mw-page-title-main">VERITAS</span> Ground-based gamma-ray observatory

VERITAS is a major ground-based gamma-ray observatory with an array of four 12 meter optical reflectors for gamma-ray astronomy in the GeV – TeV photon energy range. VERITAS uses the Imaging Atmospheric Cherenkov Telescope technique to observe gamma rays that cause particle showers in Earth's atmosphere that are known as extensive air showers. The VERITAS array is located at the Fred Lawrence Whipple Observatory, in southern Arizona, United States. The VERITAS reflector design is similar to the earlier Whipple 10-meter gamma-ray telescope, located at the same site, but is larger in size and has a longer focal length for better control of optical aberrations. VERITAS consists of an array of imaging telescopes deployed to view atmospheric Cherenkov showers from multiple locations to give the highest sensitivity in the 100 GeV – 10 TeV band. This very high energy observatory, completed in 2007, effectively complements the Large Area Telescope (LAT) of the Fermi Gamma-ray Space Telescope due to its larger collection area as well as coverage in a higher energy band.

<span class="mw-page-title-main">GRAPES-3</span>

The GRAPES-3 experiment located at Ooty in India started as a collaboration of the Indian Tata Institute of Fundamental Research and the Japanese Osaka City University, and now also includes the Japanese Nagoya Women's University.

Milagro was a ground-based water Cherenkov radiation telescope situated in the Jemez Mountains near Los Alamos, New Mexico at the Fenton Hill Observatory site. It was primarily designed to detect gamma rays but also detected large numbers of cosmic rays. It operated in the TeV region of the spectrum at an altitude of 2530 m. Like conventional telescopes, Milagro was sensitive to light but the similarities ended there. Whereas "normal" astronomical telescopes view the universe in visible light, Milagro saw the universe at very high energies. The light that Milagro saw was about 1 trillion times more energetic than visible light. While these particles of light, known as photons, are the same as the photons that make up visible light, they behave quite differently due to their high energies.

<span class="mw-page-title-main">Cosmic-ray observatory</span> Installation built to detect high-energy-particles coming from space

A cosmic-ray observatory is a scientific installation built to detect high-energy-particles coming from space called cosmic rays. This typically includes photons, electrons, protons, and some heavier nuclei, as well as antimatter particles. About 90% of cosmic rays are protons, 9% are alpha particles, and the remaining ~1% are other particles.

<span class="mw-page-title-main">GAMMA</span>

The GAMMA experiment is a study of:

<span class="mw-page-title-main">NEVOD</span>

NEVOD is a neutrino detector and cosmic ray experiment that attempts to detect Cherenkov radiation arising from interactions between water and charged particles. It represents the first attempt to perform such measurements at the Earth's surface; it is because of this surface deployment that the experiment is also able to investigate cosmic rays. NEVOD is situated at the Moscow Engineering Physics Institute (MEPhI).

The Tunka experiment now named TAIGA measures air showers, which are initiated by charged cosmic rays or high energy gamma rays. TAIGA is situated in Siberia in the Tunka valley close to lake Baikal. Meanwhile, TAIGA consists of five different detector systems: Tunka-133, Tunka-Rex, and Tunka-Grande for charged cosmic rays; Tunka-HiSCORE and Tunka-IACT for gamma astronomy. From the measurements of each detector it is possible to reconstruct the arrival direction, energy and type of the cosmic rays, where the accuracy is enhanced by the combination of different detector systems.

<span class="mw-page-title-main">Very-high-energy gamma ray</span> Gamma radiation with photon energies between 100GeV and 100TeV

Very-high-energy gamma ray (VHEGR) denotes gamma radiation with photon energies of 100 GeV (gigaelectronvolt) to 100 TeV (teraelectronvolt), i.e., 1011 to 1014 electronvolts. This is approximately equal to wavelengths between 10−17 and 10−20 meters, or frequencies of 2 × 1025 to 2 × 1028 Hz. Such energy levels have been detected from emissions from astronomical sources such as some binary star systems containing a compact object. For example, radiation emitted from Cygnus X-3 has been measured at ranges from GeV to exaelectronvolt-levels. Other astronomical sources include BL Lacertae, 3C 66A Markarian 421 and Markarian 501. Various other sources exist that are not associated with known bodies. For example, the H.E.S.S. catalog contained 64 sources in November 2011.

<span class="mw-page-title-main">High Altitude Water Cherenkov Experiment</span>

The High Altitude Water Cherenkov Experiment or High Altitude Water Cherenkov Observatory is a gamma-ray and cosmic ray observatory located on the flanks of the Sierra Negra volcano in the Mexican state of Puebla at an altitude of 4100 meters, at 18°59′41″N97°18′30.6″W. HAWC is the successor to the Milagro gamma-ray observatory in New Mexico, which was also a gamma-ray observatory based around the principle of detecting gamma-rays indirectly using the water Cherenkov method.

The Large High Altitude Air Shower Observatory (LHAASO) is a gamma-ray and cosmic-ray observatory in Daocheng, in the Garzê Tibetan Autonomous Prefecture in Sichuan, China. It is designed to observe air showers triggered by gamma rays and cosmic rays. The observatory is at an altitude of 4,410 metres (14,470 ft) above sea level. Observations started in April 2019.

References

  1. 1 2 3 Ong, Rene (2006-09-09). Ultra High Energy Cosmic Ray Research with CASA-MIA. University of California, Los Angeles (UCLA). S2CID   39155837.
  2. Gaisser, T. K.; Staney, Todor; Halzen, F.; Long, W. F.; Zas, E. (1991-01-15). "Gamma-ray astronomy above 50 TeV with muon-poor showers". Physical Review D. 43 (2): 314–318. Bibcode:1991PhRvD..43..314G. doi:10.1103/PhysRevD.43.314. PMID   10013389.
  3. Gibbs, Kenneth G (1988-02-01). "The Chicago Air Shower Array (CASA)". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 264 (1): 67–73. Bibcode:1988NIMPA.264...67G. doi:10.1016/0168-9002(88)91104-7. ISSN   0168-9002.
  4. Ong, René A.; Cronin, James W.; Gibbs, Kenneth G.; Krimm, Hans A.; McKay, Timothy A.; Mascarenhas, Nicholas; Müller, Dietrich; Newport, Brian J.; Rosenberg, Leslie J.; Wiedenbeck, Mark E. (1990-03-01). "Design and performance of the Chicago Air Shower Array". Nuclear Physics B - Proceedings Supplements. 14 (1): 273–284. doi:10.1016/0920-5632(90)90432-T. ISSN   0920-5632.
  5. 1 2 3 Borione, A.; Covault, C. E.; Cronin, J. W.; Fick, B. E.; Gibbs, K. G.; Krimm, H. A.; Mascarenhas, N. C.; McKay, T. A.; Müller, D.; Newport, B. J.; Ong, R. A. (1994-07-15). "A large air shower array to search for astrophysical sources emitting γ-rays with energies ≥1014 eV". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 346 (1): 329–352. Bibcode:1994NIMPA.346..329B. doi:10.1016/0168-9002(94)90722-6. hdl: 2027.42/31441 . ISSN   0168-9002.
  6. Samorski, M.; Stamm, W. (1983). "Detection of 2 X 10 to the 15th to 2 X 10 to the 16th eV gamma-rays from Cygnus X-3". The Astrophysical Journal. 268: L17. doi: 10.1086/184021 . ISSN   0004-637X.
  7. Lloyd-Evans, J.; Coy, R. N.; Lambert, A.; Lapikens, J.; Patel, M.; Reid, R. J. O.; Watson, A. A. (1983). "Observation of γ rays >10 15 eV from Cygnus X-3". Nature. 305 (5937): 784–787. Bibcode:1983Natur.305..784L. doi:10.1038/305784a0. ISSN   1476-4687. S2CID   45448349.
  8. Borione, A.; Chantell, M. C.; Covault, C. E.; Cronin, J. W.; Fick, B. E.; Fowler, J. W.; Fortson, L. F.; Gibbs, K. G.; Green, K. D.; Newport, B. J.; Ong, R. A. (1997-02-15). "High statistics search for ultrahigh energy γ-ray emission from Cygnus X-3 and Hercules X-1". Physical Review D. 55 (4): 1714–1731. arXiv: astro-ph/9611117 . Bibcode:1997PhRvD..55.1714B. doi:10.1103/PhysRevD.55.1714. ISSN   0556-2821. S2CID   119107040.
  9. Borione, A.; Catanese, M. A.; Chantell, M. C.; Covault, C. E.; Cronin, J. W.; Fick, B. E.; Fortson, L. F.; Fowler, J. F.; Gibbs, K. G.; Glasmacher, M. A. K.; Green, K. D. (1997-05-20). "A Search for Ultra–High-Energy Gamma-Ray Emission from the Crab Nebula and Pulsar". The Astrophysical Journal. 481 (1): 313–326. Bibcode:1997ApJ...481..313B. doi: 10.1086/304042 . ISSN   0004-637X. S2CID   121666507.
  10. Catanese, M.; Borione, A.; Covault, C. E.; Cronin, J. W.; Fick, B. E.; Fortson, L. F.; Gibbs, K. G.; Glasmacher, M. A. K.; Green, K. D.; Kieda, D.; Matthews, J. (1996). "A Search for Ultrahigh-Energy Gamma Rays from EGRET-detected Active Galactic Nuclei Using CASA-MIA". The Astrophysical Journal. 469: 572. Bibcode:1996ApJ...469..572C. doi:10.1086/177806. ISSN   0004-637X.
  11. McKay, T. A.; Borione, A.; Catanese, M.; Covault, C. E.; Cronin, J. W.; Fick, B. E.; Gibbs, K. G.; Green, K. D.; Hauptfeld, S.; Kieda, D.; Krimm, H. A. (1993). "A Northern Sky Survey for Astrophysical Point Sources of 100 TeV Gamma Radiation". The Astrophysical Journal. 417: 742. Bibcode:1993ApJ...417..742M. doi:10.1086/173354. ISSN   0004-637X.
  12. Chantell, M. C.; Covault, C. E.; Cronin, J. W.; Fick, B. E.; Fortson, L. F.; Fowler, J. W.; Green, K. D.; Newport, B. J.; Ong, R. A.; Oser, S.; Catanese, M. A. (1997-09-08). "Limits on the Isotropic Diffuse Flux of Ultrahigh Energy $\ensuremath{\gamma}$ Radiation". Physical Review Letters. 79 (10): 1805–1808. arXiv: astro-ph/9705246 . doi:10.1103/PhysRevLett.79.1805. S2CID   119517410.
  13. Borione, A.; Catanese, M. A.; Chantell, M. C.; Covault, C. E.; Cronin, J. W.; Fick, B. E.; Fortson, L. F.; Fowler, J.; Glasmacher, M. A. K.; Green, K. D.; Kieda, D. B. (1998-01-20). "Constraints on Gamma-Ray Emission from the Galactic Plane at 300 TeV". The Astrophysical Journal. 493 (1): 175–179. arXiv: astro-ph/9703063 . Bibcode:1998ApJ...493..175B. doi: 10.1086/305096 . ISSN   0004-637X.
  14. Glasmacher, M. A. K.; Catanese, M. A.; Chantell, M. C.; Covault, C. E.; Cronin, J. W.; Fick, B. E.; Fortson, L. F.; Fowler, J. W.; Green, K. D; Kieda, D. B.; Matthews, J. (1999-05-01). "The cosmic ray energy spectrum between 1014 and 1016 eV". Astroparticle Physics. 10 (4): 291–302. Bibcode:1999APh....10..291G. doi:10.1016/S0927-6505(98)00070-X. ISSN   0927-6505.
  15. Glasmacher, M. A. K.; Catanese, M. A.; Chantell, M. C.; Covault, C. E.; Cronin, J. W.; Fick, B. E.; Fortson, L. F.; Fowler, J. W.; Green, K. D.; Kieda, D. B.; Matthews, J. (1999-10-01). "The cosmic ray composition between 1014 and 1016 eV". Astroparticle Physics. 12 (1): 1–17. Bibcode:1999APh....12....1G. doi:10.1016/S0927-6505(99)00076-6. ISSN   0927-6505.
  16. Fowler, J. W.; Fortson, L. F.; Jui, C. C. H.; Kieda, D. B.; Ong, R. A.; Pryke, C. L.; Sommers, P. (2001-03-01). "A measurement of the cosmic ray spectrum and composition at the knee". Astroparticle Physics. 15 (1): 49–64. arXiv: astro-ph/0003190 . Bibcode:2001APh....15...49F. doi:10.1016/S0927-6505(00)00139-0. ISSN   0927-6505. S2CID   2062778.