Chirality timeline presents a timeline of landmark events that unfold the developments happened in the field of chirality.
Many molecules come in two forms that are mirror images of each other, just like our hands. This type of molecule is called chiral. In nature, one of these forms is usually more common than the other. In our cells, one of these mirror images of a molecule fits "like a glove," while the other may be harmful. [1] [2]
In nature, molecules with chirality include hormones, DNA, antibodies, and enzymes. For example, (R)-limonene smells like oranges, while (S)-limonene smells like lemons. Both molecules have the same chemical formula, but their spatial orientations are different, which makes a big difference in their biological properties. Chiral molecules in the receptors in our noses can tell the difference between these things. Chirality affects biochemical reactions, and the way a drug works depends on what kind of enantiomer it is. Many drugs are chiral and it is important that the shape of the drug matches the shape of the cell receptor it is meant to affect. Mismatching will make the drug less effective, which could be a matter of life and death, as happened with thalidomide in the 1960s. [3] [4]
It has long been known that structural factors, particularly chirality and stereochemistry, have a big impact on pharmacological efficacy and pharmacokinetic behavior. Since more than a century ago, pertinent information pertaining to chirality has been accumulating in numerous fields, in particular, physics, chemistry and biology, at an accelerated rate, giving rise to more comprehensive and in-depth reasoning, conceptions, and ideas. [5] [6] [7] [8] This page offers a chronology of significant contributions that have been made in the journey of chirality [1809 to 2021].
Year | Image | Name | Country | Contribution/Achievement | Ref |
---|---|---|---|---|---|
1809 | Étienne-Louis Malus | France | Discovery of plane polarized light; Origin of stereochemistry | [9] | |
1811 | Dominique François Jean Arago | France | Showed how cut crystals change the plane of polarized light | [10] | |
1812 | Jean-Baptiste Biot | France | Found that a quartz plate cut at a right angle to its crystal axis rotates the plane of polarized light by an angle that is proportional to the thickness of the plate. This is the phenomenon of optical rotation | [11] | |
1815 | Jean-Baptiste Biot | France | Applied these ideas to organic substances, like oil of turpentine, sugar, camphor, and tartaric acid (solutions of solids) | [12] | |
1820 | Eilhard Mitscherlich | German | Discovery of the phenomenon of crystallographic isomorphism. Correlated the similarity of crystal shapes with an analogy in chemical composition, reported that sodium ammonium salts of (+)-tartaric acid and racemic acids are completely isomorphous and are identical in all aspects except in optical activity | [13] | |
1848 | Louis Pasteur | France | The racemic sodium ammonium salt of tartaric acid was crystallized, and two different types of crystals were found. First, enantiomers were physically separated | [14] | |
1857 | Louis Pasteur | France | Made the first observation of enantioselectivity in living things | [15] | |
1874 | Jacobus Henricus van't Hoff | Netherlands | Outlined the connection between a molecule's three-dimensional structure, its optical activity, and the idea of asymmetric carbon. Proposed a stereochemical theory of isomerism based on the three-dimensional structure of molecules. Van't Hoff, who won the first Nobel Prize in Chemistry in 1901, for discovery of the laws of chemical dynamics and osmotic pressure in solutions" | [16] | |
1874 | Joseph Achille Le Bel | France | Used asymmetry arguments and talked about the asymmetry of the molecules as a whole instead of the asymmetry of each carbon atom. Le Bel's thought could be considered as the general theory of stereoisomerism. | [17] | |
1875 | Jacobus Henricus van't Hoff | Netherlands | Predicted allenes' stereoisomerism, but it wasn't seen in the lab until 1935 | [18] | |
1890 | Hermann Emil Louis Fischer | German | Imagined the fit between the enzyme and the substrate as a lock and key mechanism. He made Fischer projections to show their three-dimensional structures. He was awarded the second Nobel Prize in chemistry, 1902 "in recognition of the extraordinary services he has rendered by his work on sugar and purine syntheses.". | [19] [20] | |
1890 | Poulson | Contributions to the knowledge of the pharmacological group of cocaine | [21] | ||
1894 | Ehrlich and Einhorn. | Physiological and toxicological significance of chiral compounds; found (+)-cocaine was more active, started working faster, and lasted less time than (-)-cocaine. | [22] | ||
1903 | Arthur Robertson Cushny | United Kingdom | Described how atropine and (-)-hyoscyamine work differently on the papillary, cardiac, and salivary systems and how they affect the spinal cord of a frog; First, gave clear examples of how the biological activity of two enantiomers of a chiral molecule can be different. | [23] | |
1904 | Pictet. and Rotschy | Described the differences in nicotine isomers' toxic doses | [24] | ||
1904 | William Thomson | British | The term "chiral" was first used and introduced. Later, Lord Kelvin was made a peer. | [25] | |
1908 | Abderhalden. and Müller | Described (-)- and (+)-epinephrine have very different effects on blood pressure. | [26] | ||
1910 | Grove | Nicotine isomers have different levels of toxicity. | [27] | ||
1918 | Frey | Reported the isomer of quinine - quinidine, to be more effective in treating dysrhythmias. | [28] | ||
1933 | Easson and Stedman | Advanced a thee-point attachment model to explain chiral recognition process between the drug (with a single center of asymmetry) and the receptor or enzyme active site | [29] | ||
1957 1958 | Lancelot Law Whyte | Scotland | Rediscovered term chiral | , [30] [31] | |
1965 | Kurt Martin Mislow | United States | Firmly reintroduced the term chirality into stereochemical literature; German-born American organic chemist | [32] | |
1956/1966 | Robert Sidney Cahn | British | Devised R/S and E/Z notations; Cahn–Ingold–Prelog priority rules | [33] | |
1956/1966 | Christopher Kelk Ingold | British | Co-author of Cahn–Ingold–Prelog priority rules; Did groundbreaking work (between 1920-30s) on reaction mechanisms and the electronic structure of organic compounds | [33] | |
1956/1966 | Vladimir Prelog | Sarajevo | Co-author of the Cahn–Ingold–Prelog priority rules | [33] | |
1975 | Vladimir Prelog | Sarajevo | Nobel prize in chemistry for his research into the stereochemistry of organic molecules and reaction | [34] | |
1975 | John Cornforth | Australia | Awarded Nobel prize for his work on the stereochemistry of enzyme-catalyzed reactions | [35] | |
2001 | William Standish Knowles | United States | Won Nobel prize in chemistry in 2001 for his work on the development of catalytic asymmetric synthesis (chirally catalyzed hydrogenation reactions | [36] | |
2001 | Ryōji Noyori | Japan | Won Nobel prize in chemistry in 2001 for his work on the development of catalytic asymmetric synthesis (chirally catalyzed hydrogenation reactions) | [36] | |
2001 | Karl Barry Sharpless | United States | Won Nobel prize in chemistry in 2001 for his work on the development of catalytic asymmetric synthesis (chirally catalyzed oxidation reactions) | [36] | |
2021 | Benjamin List | German | Awarded Nobel Prize in Chemistry in 2021 for his work on the development of asymmetric organocatalysis | [37] | |
2021 | David MacMillan | United Kingdom United States | Awarded Nobel Prize in Chemistry in 2021 for his work on the development of asymmetric organocatalysis | [37] |
Friedrich August Kekulé, later Friedrich August Kekule von Stradonitz, was a German organic chemist. From the 1850s until his death, Kekulé was one of the most prominent chemists in Europe, especially in the field of theoretical chemistry. He was the principal founder of the theory of chemical structure and in particular the Kekulé structure of benzene.
Pyrrole is a heterocyclic, aromatic, organic compound, a five-membered ring with the formula C4H4NH. It is a colorless volatile liquid that darkens readily upon exposure to air. Substituted derivatives are also called pyrroles, e.g., N-methylpyrrole, C4H4NCH3. Porphobilinogen, a trisubstituted pyrrole, is the biosynthetic precursor to many natural products such as heme.
Phthalic anhydride is the organic compound with the formula C6H4(CO)2O. It is the anhydride of phthalic acid. Phthalic anhydride is a principal commercial form of phthalic acid. It was the first anhydride of a dicarboxylic acid to be used commercially. This white solid is an important industrial chemical, especially for the large-scale production of plasticizers for plastics. In 2000, the worldwide production volume was estimated to be about 3 million tonnes per year.
Eduard Buchner was a German chemist and zymologist, awarded the 1907 Nobel Prize in Chemistry for his work on fermentation.
Furfural is an organic compound with the formula C4H3OCHO. It is a colorless liquid, although commercial samples are often brown. It has an aldehyde group attached to the 2-position of furan. It is a product of the dehydration of sugars, as occurs in a variety of agricultural byproducts, including corncobs, oat, wheat bran, and sawdust. The name furfural comes from the Latin word furfur, meaning bran, referring to its usual source. Furfural is only derived from dried biomass. In addition to ethanol, acetic acid, and sugar, furfural is one of the oldest organic chemicals available readily purified from natural precursors.
Richard Adolf Zsigmondy was an Austrian-born chemist. He was known for his research in colloids, for which he was awarded the Nobel Prize in chemistry in 1925, as well as for co-inventing the slit-ultramicroscope, and different membrane filters. The crater Zsigmondy on the Moon is named in his honour.
Pyrazine is a heterocyclic aromatic organic compound with the chemical formula C4H4N2. It is a symmetrical molecule with point group D2h. Pyrazine is less basic than pyridine, pyridazine and pyrimidine. It is a "deliquescent crystal or wax-like solid with a pungent, sweet, corn-like, nutty odour".
The Bischler–Möhlau indole synthesis, also often referred to as the Bischler indole synthesis, is a chemical reaction that forms a 2-aryl-indole from an α-bromo-acetophenone and excess aniline; it is named after August Bischler and Richard Möhlau .
Diphenylchloroarsine (DA) is the organoarsenic compound with the formula (C6H5)2AsCl. It is highly toxic and was once used in chemical warfare. It is also an intermediate in the preparation of other organoarsenic compounds. The molecule consists of a pyramidal As(III) center attached to two phenyl rings and one chloride. It was also known as sneezing oil during World War I by the Allies.
Paul Friedländer was a German chemist best known for his research on derivates of indigo and isolation of Tyrian purple from Murex brandaris.
Hans Freiherr von Pechmann was a German chemist, renowned for his discovery of diazomethane in 1894. Pechmann condensation and Pechmann pyrazole synthesis. He also first prepared 1,2-diketones, acetonedicarboxylic acid, methylglyoxal and diphenyltriketone; established the symmetrical structure of anthraquinone.
Fischer glycosidation refers to the formation of a glycoside by the reaction of an aldose or ketose with an alcohol in the presence of an acid catalyst. The reaction is named after the German chemist, Emil Fischer, winner of the Nobel Prize in chemistry, 1902, who developed this method between 1893 and 1895.
The Wolffenstein–Böters reaction is an organic reaction converting benzene to picric acid by a mixture of aqueous nitric acid and mercury(II) nitrate.
Chlorobutanol (trichloro-2-methyl-2-propanol) is an organic compound with the formula CCl3C(OH)(CH3)2. The compound is an example of a chlorohydrin. The compound is a preservative, sedative, hypnotic and weak local anesthetic similar in nature to chloral hydrate. It has antibacterial and antifungal properties. Chlorobutanol is typically used at a concentration of 0.5% where it lends long term stability to multi-ingredient formulations. However, it retains antimicrobial activity at 0.05% in water. Chlorobutanol has been used in anesthesia and euthanasia of invertebrates and fishes. It is a white, volatile solid with a camphor-like odor.
The Schotten–Baumann reaction is a method to synthesize amides from amines and acid chlorides:
The Glaser coupling is a type of coupling reaction. It is by far one of the oldest coupling reactions and is based on copper compounds like copper(I) chloride or copper(I) bromide and an additional oxidant like air. The base used in the original research paper is ammonia and the solvent is water or an alcohol. The reaction was first reported by Carl Andreas Glaser in 1869. He suggested the following process on his way to diphenylbutadiyne:
In organic chemistry, the Claisen–Schmidt condensation is the reaction between an aldehyde or ketone having an α-hydrogen with an aromatic carbonyl compound lacking an α-hydrogen. It can be considered as a specific variation of the aldol condensation. This reaction is named after two of its pioneering investigators Rainer Ludwig Claisen and J. Gustav Schmidt, who independently published on this topic in 1880 and 1881. An example is the synthesis of dibenzylideneacetone ( -1,5-diphenylpenta-1,4-dien-3-one).
Friedrich Oskar Giesel was a German organic chemist. During his work in a quinine factory in the late 1890s, he started to work on the at-that-time-new field of radiochemistry and started the production of radium. In the period between 1902 and 1904, he was able to isolate a new element emanium. In a now controversially reviewed process, it was stated that emanium is identical to actinium, which was discovered by André-Louis Debierne in 1899.
Conhydrine is a poisonous alkaloid found in poison hemlock in small quantities.
The Criegee oxidation is a glycol cleavage reaction in which vicinal diols are oxidized to form ketones and aldehydes using lead tetraacetate. It is analogous to the use of periodate but uses a milder oxidant. This oxidation was discovered by Rudolf Criegee and coworkers and first reported in 1931 using ethylene glycol as the substrate.