Chlorella sorokiniana

Last updated

Chlorella sorokiniana
C.sorokiniana.tif
C. sorokiniana cells 400× magnification
Scientific classification OOjs UI icon edit-ltr.svg
(unranked): Viridiplantae
Division: Chlorophyta
Class: Trebouxiophyceae
Order: Chlorellales
Family: Chlorellaceae
Genus: Chlorella
Species:
C. sorokiniana
Binomial name
Chlorella sorokiniana
Shihira & R.W.Krauss [1]

Chlorella sorokiniana is a species of freshwater green microalga in the Division Chlorophyta. [2] It has a characteristic emerald-green color and pleasant grass odor. Its cells divide rapidly to produce four new cells every 17 to 24 hours. The alga was described by Martinus W. Beijerinck in 1890. [3] In 1951, the Rockefeller Foundation in collaboration with the Japanese Government and Hiroshi Tamiya developed the technology to grow, harvest and process Chlorella sorokiniana on a large, economically feasible scale. This microalga has also been used extensively as a model system to study enzymes involved in higher plant metabolism. [4]

Also, Chlorella sorokiniana is used to research ways to improve biofuel efficiency. [5] [6]

Chlorella sorokiniana is often used as a food supplement [7] or to treat waste water. [8] [9]

Related Research Articles

<span class="mw-page-title-main">Algae</span> Diverse group of photosynthetic eukaryotic organisms

Algae are any of a large and diverse group of photosynthetic, eukaryotic organisms. The name is an informal term for a polyphyletic grouping that includes species from multiple distinct clades. Included organisms range from unicellular microalgae, such as Chlorella, Prototheca and the diatoms, to multicellular forms, such as the giant kelp, a large brown alga which may grow up to 50 metres (160 ft) in length. Most are aquatic and lack many of the distinct cell and tissue types, such as stomata, xylem and phloem that are found in land plants. The largest and most complex marine algae are called seaweeds, while the most complex freshwater forms are the Charophyta, a division of green algae which includes, for example, Spirogyra and stoneworts. Algae that are carried by water are plankton, specifically phytoplankton.

<span class="mw-page-title-main">Biofuel</span> Type of biological fuel

Biofuel is a fuel that is produced over a short time span from biomass, rather than by the very slow natural processes involved in the formation of fossil fuels such as oil. Biofuel can be produced from plants or from agricultural, domestic or industrial biowaste. Biofuels are mostly used for transportation, but can also be used for heating and electricity. Biofuels are regarded as a renewable energy source. The use of biofuel has been subject to criticism regarding the "food vs fuel" debate, varied assessments of their sustainability, and possible deforestation and biodiversity loss as a result of biofuel production.

Auxenochlorella pyrenoidosa, formerly Chlorella pyrenoidosa, is a species of the freshwater green alga in the Division Chlorophyta. It occurs worldwide. The species name pyrenoidosa refers to the presence of a prominent pyrenoid within the Chlorella chloroplast.

<i>Chlorella</i> Genus of green algae

Chlorella is a genus of about thirteen species of single-celled green algae of the division Chlorophyta. The cells are spherical in shape, about 2 to 10 μm in diameter, and are without flagella. Their chloroplasts contain the green photosynthetic pigments chlorophyll-a and -b. In ideal conditions cells of Chlorella multiply rapidly, requiring only carbon dioxide, water, sunlight, and a small amount of minerals to reproduce.

<span class="mw-page-title-main">Algaculture</span> Aquaculture involving the farming of algae

Algaculture is a form of aquaculture involving the farming of species of algae.

<span class="mw-page-title-main">Biohydrogen</span> Hydrogen that is produced biologically

Biohydrogen is H2 that is produced biologically. Interest is high in this technology because H2 is a clean fuel and can be readily produced from certain kinds of biomass, including biological waste. Furthermore some photosynthetic microorganisms are capable to produce H2 directly from water splitting using light as energy source.

<span class="mw-page-title-main">Photobioreactor</span> Bioreactor with a light source to grow photosynthetic microorganisms

A photobioreactor (PBR) refers to any cultivation system designed for growing photoautotrophic organisms using artificial light sources or solar light to facilitate photosynthesis. Photobioreactors are typically used to cultivate microalgae, cyanobacteria, and some mosses. Photobioreactors can be open systems, such as raceway ponds, which rely upon natural sources of light and carbon dioxide. Closed photobioreactors are flexible systems that can be controlled to the physiological requirements of the cultured organism, resulting in optimal growth rates and purity levels. Photobioreactors are typically used for the cultivation of bioactive compounds for biofuels, pharmaceuticals, and other industrial uses.

<i>Scenedesmus</i> Genus of green algae

Scenedesmus is a genus of green algae, in the class Chlorophyceae. They are colonial and non-motile. They are one of the most common components of phytoplankton in freshwater habitats worldwide.

Auxenochlorella protothecoides, formerly known as Chlorella protothecoides, is a facultative heterotrophic green alga in the family Chlorellaceae. It is known for its potential application in biofuel production. It was first characterized as a distinct algal species in 1965, and has since been regarded as a separate genus from Chlorella due its need for thiamine for growth. Auxenochlorella species have been found in a wide variety of environments from acidic volcanic soil in Italy to the sap of poplar trees in the forests of Germany. Its use in industrial processes has been studied, as the high lipid content of the alga during heterotrophic growth is promising for biodiesel; its use in wastewater treatment has been investigated, as well.

<i>Choricystis</i> Genus of algae

Choricystis is a genus of green algae in the class Trebouxiophyceae, considered a characteristic picophytoplankton in freshwater ecosystems. Choricystis, especially the type species Choricystis minor, has been proposed as an effective source of fatty acids for biofuels. Choricystis algacultures have been shown to survive on wastewater. In particular, Choricystis has been proposed as a biological water treatment system for industrial waste produced by the processing of dairy goods.

<span class="mw-page-title-main">Algae fuel</span> Use of algae as a source of energy-rich oils

Algae fuel, algal biofuel, or algal oil is an alternative to liquid fossil fuels that uses algae as its source of energy-rich oils. Also, algae fuels are an alternative to commonly known biofuel sources, such as corn and sugarcane. When made from seaweed (macroalgae) it can be known as seaweed fuel or seaweed oil.

<i>Nannochloropsis</i> Genus of algae

Nannochloropsis is a genus of algae comprising six known species. The genus in the current taxonomic classification was first termed by Hibberd (1981). The species have mostly been known from the marine environment but also occur in fresh and brackish water. All of the species are small, nonmotile spheres which do not express any distinct morphological features that can be distinguished by either light or electron microscopy. The characterisation is mostly done by rbcL gene and 18S rRNA sequence analysis.

<span class="mw-page-title-main">Algae bioreactor</span> Device used for cultivating micro or macro algae

An algae bioreactor is used for cultivating micro or macroalgae. Algae may be cultivated for the purposes of biomass production (as in a seaweed cultivator), wastewater treatment, CO2 fixation, or aquarium/pond filtration in the form of an algae scrubber. Algae bioreactors vary widely in design, falling broadly into two categories: open reactors and enclosed reactors. Open reactors are exposed to the atmosphere while enclosed reactors, also commonly called photobioreactors, are isolated to varying extents from the atmosphere. Specifically, algae bioreactors can be used to produce fuels such as biodiesel and bioethanol, to generate animal feed, or to reduce pollutants such as NOx and CO2 in flue gases of power plants. Fundamentally, this kind of bioreactor is based on the photosynthetic reaction, which is performed by the chlorophyll-containing algae itself using dissolved carbon dioxide and sunlight. The carbon dioxide is dispersed into the reactor fluid to make it accessible to the algae. The bioreactor has to be made out of transparent material.

<i>Nannochloropsis</i> and biofuels

Nannochloropsis is a genus of alga within the heterokont line of eukaryotes, that is being investigated for biofuel production. One marine Nannochloropsis species has been shown to be suitable for algal biofuel production due to its ease of growth and high oil content, mainly unsaturated fatty acids and a significant percentage of palmitic acid. It also contains enough unsaturated fatty acid linolenic acid and polyunsaturated acid for a quality biodiesel.

<span class="mw-page-title-main">Culture of microalgae in hatcheries</span>

Microalgae or microscopic algae grow in either marine or freshwater systems. They are primary producers in the oceans that convert water and carbon dioxide to biomass and oxygen in the presence of sunlight.

Raphidocelis subcapitata, formerly known as Selenastrum capricornutum and Pseudokirchneriella subcapitata is a microalga. This microalga presents a curved and twisted appearance like a sickle. The cells are normally presented in a solitary form in culture, although it may also be present in small colonies. It has a length between 7 and 15 μm, and a width between 1.2 and 3 μm. A single chloroplast is present, filling nearly the entire cell; it lacks a pyrenoid. It is commonly used as a bioindicator species to assess the levels of nutrients or toxic substances in fresh water environments. This species is quite sensitive to the presence of toxic substances including metals and has a ubiquitous distribution, so is broadly used in ecotoxicology. This species has been found to be more competitive than Chlorella vulgaris at low sodium chloride concentrations, but C. vulgaris was more competitive under salt stress.

<i>Gonyostomum semen</i> Species of alga

Gonyostomum semen is a species of freshwater algae in the genus Gonyostomum, with worldwide distribution. They cause nuisance algal blooms and are known to cause allergic reactions to people swimming in lakes.

<i>Chlorella autotrophica</i> Species of green alga

Chlorella autotrophica, or Chlorella sp. (580), is a species of euryhaline, unicellular microalga in the Division Chlorophyta. It is found in brackish waters and was first isolated in 1956 by Ralph A. Lewin. The species is defined by its inability to use organic carbon as a food source, making the species an obligate autotroph. It is sometimes considered a variety of Chlorella vulgaris.

Monoraphidium neglectum is a single-cell green alga of the family Selenastraceae. Cells are free-floating (planktonic), fusiform and sometimes arched in outline, with rounded-pointed tips. They are 16–30 μm long by 3–4.5 μm wide. The chloroplast is single per cell and lacks a pyrenoid. It reproduces by forming two, four or eight autospores.

<i>Chlorella vulgaris</i> Species of green alga

Chlorella vulgaris is a species of green microalga in the division Chlorophyta. It is mainly used as a dietary supplement or protein-rich food additive in Japan.

References

  1. "Chlorella sorokiniana Shihira & R.W.Krauss 1965 :: Algaebase". www.algaebase.org.
  2. "SAG 211-8k Chlorella sorokiniana". sagdb.uni-goettingen.de.
  3. "History of Chlorella - Algorigin, Swiss specialist for algae". Natural and organic algae supplements shop.
  4. "Chlorella sorokiniana - Definition, Glossary, Details - Oilgae". www.oilgae.com.
  5. Cazzaniga, Stefano; Dall'Osto, Luca; Szaub, Joanna; Scibilia, Luca; Ballottari, Matteo; Purton, Saul; Bassi, Roberto (21 October 2014). "Domestication of the green alga Chlorella sorokiniana: reduction of antenna size improves light-use efficiency in a photobioreactor". Biotechnology for Biofuels. 7 (1): 157. doi: 10.1186/s13068-014-0157-z . PMC   4210543 . PMID   25352913.
  6. Huesemann, M.; Chavis, A.; Edmundson, Scott J.; Rye, D.; Hobbs, S.; Sun, N.; Wigmosta, M. (2017-09-13). "Climate-simulated raceway pond culturing: quantifying the maximum achievable annual biomass productivity of Chlorella sorokiniana in the contiguous USA". Journal of Applied Phycology. 30 (1): 287–298. doi:10.1007/s10811-017-1256-6. ISSN   0921-8971.
  7. Napolitano, Gaetana; Fasciolo, Gianluca; Salbitani, Giovanna; Venditti, Paola (17 September 2020). "Chlorella sorokiniana Dietary Supplementation Increases Antioxidant Capacities and Reduces ROS Release in Mitochondria of Hyperthyroid Rat Liver". Antioxidants. 9 (9): 883. doi: 10.3390/antiox9090883 . ISSN   2076-3921. PMC   7555375 . PMID   32957734.
  8. Fan, Jie; Cao, Liang; Gao, Cheng; Chen, Yue; Zhang, Tian C. (26 September 2019). "Characteristics of wastewater treatment by Chlorella sorokiniana and comparison with activated sludge". Water Science and Technology. 80 (5): 892–901. doi: 10.2166/wst.2019.329 . PMID   31746796. S2CID   204131641.
  9. Thoré, Eli S. J.; Schoeters, Floris; De Cuyper, Audrey; Vleugels, Rut; Noyens, Isabelle; Bleyen, Peter; Van Miert, Sabine (2021). "Waste Is the New Wealth – Recovering Resources From Poultry Wastewater for Multifunctional Microalgae Feedstock". Frontiers in Environmental Science. 9. doi: 10.3389/fenvs.2021.679917 .