Chloropicaceae

Last updated

Chloropicaceae
Chloropicon sieburthii 2017 Lope dos Santos et al.png
Chloropicon sieburthii, type species
Scientific classification OOjs UI icon edit-ltr.svg
(unranked): Viridiplantae
Division: Chlorophyta
Class: Chloropicophyceae
Lopes dos Santos & Eikrem 2017
Order: Chloropicales
Lopes dos Santos & Eikrem 2017
Family: Chloropicaceae
Lopes dos Santos & Eikrem 2017
Genera

Chloropicophyceae is a class of green algae in the division Chlorophyta that, along with Picocystophyceae, coincides with the traditional "prasinophyte clade VII". [1] Chloropicophyceae has a single order, Chloropicales with a single family, Chloropicaceae.

Contents

Description

Members of this class are coccoid green cells, with a diameter of 1.5–4 μm, found in marine waters, with one nucleus, one mitochondrion, and one chloroplast surrounded by two membranes, containing starch grain; their single chloroplast has chlorophylls a and b ; they lack pyrenoid and flagella; and they have a layered cell wall. Their sexual reproduction is unknown. [1]

Taxonomy

In total, this class contains eight newly described species, belonging to two genera. The taxonomy goes as follows [1]  :

Phylogeny

In the 2017 article where the new class is described, it is shown as the sister clade of the class Picocystophyceae. The internal relationships are shown in the tree below, which is a simplified version of the phylogenetic tree elaborated in the research: [1]

Chlorokybus atmophyticus (outgroup)

      

core Chlorophytes

 clade VII 
Picocystophyceae

Picocystis salinarum

Chloropicophyceae

Chloroparvula pacifica

Chloroparvula japonica

Chloropicon maureeniae

Chloropicon mariensis

Chloropicon laureae

Chloropicon primus

Chloropicon sieburthii

Chloropicon roscoffensis

Related Research Articles

<span class="mw-page-title-main">Chlorophyceae</span> Class of green algae

The Chlorophyceae are one of the classes of green algae, distinguished mainly on the basis of ultrastructural morphology. They are usually green due to the dominance of pigments chlorophyll a and chlorophyll b. The chloroplast may be discoid, plate-like, reticulate, cup-shaped, spiral- or ribbon-shaped in different species. Most of the members have one or more storage bodies called pyrenoids located in the chloroplast. Pyrenoids contain protein besides starch. Some green algae may store food in the form of oil droplets. They usually have a cell wall made up of an inner layer of cellulose and outer layer of pectose.

<span class="mw-page-title-main">Chlorophyta</span> Phylum of green algae

Chlorophyta is a taxon of green algae informally called chlorophytes. The name is used in two very different senses, so care is needed to determine the use by a particular author. In older classification systems, it is a highly paraphyletic group of all the green algae within the green plants (Viridiplantae) and thus includes about 7,000 species of mostly aquatic photosynthetic eukaryotic organisms. In newer classifications, it is the sister clade of the streptophytes/charophytes. The clade Streptophyta consists of the Charophyta in which the Embryophyta emerged. In this latter sense the Chlorophyta includes only about 4,300 species. About 90% of all known species live in freshwater. Like the land plants, green algae contain chlorophyll a and chlorophyll b and store food as starch in their plastids.

<span class="mw-page-title-main">Haptophyte</span> Type of algae

The haptophytes, classified either as the Haptophyta, Haptophytina or Prymnesiophyta, are a clade of algae.

<span class="mw-page-title-main">Green algae</span> Paraphyletic group of autotrophic eukaryotes in the clade Archaeplastida

The green algae are a group of chlorophyll-containing autotrophic eukaryotes consisting of the phylum Prasinodermophyta and its unnamed sister group that contains the Chlorophyta and Charophyta/Streptophyta. The land plants (Embryophytes) have emerged deep in the Charophyte alga as a sister of the Zygnematophyceae. Since the realization that the Embryophytes emerged within the green algae, some authors are starting to include them. The completed clade that includes both green algae and embryophytes is monophyletic and is referred to as the clade Viridiplantae and as the kingdom Plantae. The green algae include unicellular and colonial flagellates, most with two flagella per cell, as well as various colonial, coccoid (spherical), and filamentous forms, and macroscopic, multicellular seaweeds. There are about 22,000 species of green algae, many of which live most of their lives as single cells, while other species form coenobia (colonies), long filaments, or highly differentiated macroscopic seaweeds.

<span class="mw-page-title-main">Prasinophyte</span> Class of algae

The prasinophytes are a group of unicellular green algae. Prasinophytes mainly include marine planktonic species, as well as some freshwater representatives. The prasinophytes are morphologically diverse, including flagellates with one to eight flagella and non-motile (coccoid) unicells. The cells of many species are covered with organic body scales; others are naked. Well studied genera include Ostreococcus, considered to be the smallest free-living eukaryote, and Micromonas, both of which are found in marine waters worldwide. Prasinophytes have simple cellular structures, containing a single chloroplast and a single mitochondrion. The genomes are relatively small compared to other eukaryotes . At least one species, the Antarctic form Pyramimonas gelidicola, is capable of phagocytosis and is therefore a mixotrophic algae.

<span class="mw-page-title-main">Chlorodendrales</span> Order of algae

Chlorodendrales are an order of green, flagellated, thecate, unicellular eukaryotes, within the green algae class Chlorodendrophyceae. Prasinophyceae are defined by their cellular scales which are composed of carbohydrates, and Chlorodendrales are unique within this group due to these scales forming a fused thecal wall. Cells of Chlorodendrales are completely covered in scales, which fuse around the cell body producing the theca, but remain individually separated on the flagella, of which there are typically four per cell. Species within Chlorodendrales live in both marine and fresh water habitats, occupying both benthic and planktonic food webs. Additionally, they are photoautotrophs, meaning they produce their own food through the conversion of sunlight into chemical energy.

<span class="mw-page-title-main">Chlorococcaceae</span> Family of algae

Chlorococcaceae is a family of green algae, in the order Chlamydomonadales. They are mostly soil-dwelling algae. Many members of this group produce lipids and secondary carotenoids.

<span class="mw-page-title-main">Selenastraceae</span> Family of algae

Selenastraceae is a family of green algae in the order Sphaeropleales. Members of this family are common components of the phytoplankton in freshwater habitats worldwide. A few species have been found in brackish and marine habitats, such as in the Baltic Sea.

Dictyochloropsis is a genus of unicellular green alga of the phylum Chlorophyta. This genus consists of free-living algae which have a reticulate (net-like) chloroplast that varies slightly in morphology between species, and that when mature always lacks a pyrenoid. Dictyochloropsis is asexual and reproduces using autospores.

<i>Golenkinia</i> Genus of algae

Golenkinia is a genus of green algae first described in 1894 by Robert Chodat. The genus is named for the Russian phycologist Mikhail Iljitsch Golenkin. Golenkinia species live in fresh water and are found around the world.

<i>Nephroselmis</i> Genus of algae

Nephroselmis is a genus of green algae. It has been placed in the family Nephroselmidaceae, although a 2009 study suggests that it should be separated into its own class, Nephroselmidophyceae. One species can be an endosymbiont of Hatena arenicola.

<i>Picocystis</i> Genus of algae

Picocystis is a monotypic genus of green algae, the sole species is Picocystis salinarum. It is placed within its own class, Picocystophyceae in the division Chlorophyta.

<i>Prasinoderma</i> Genus of algae

Prasinoderma is a genus of green algae in the phylum Prasinodermophyta. Both species in the genus are unicellular, but P. coloniale forms loose sticky colonies.

<i>Trebouxia</i> Genus of algae

Trebouxia is a unicellular green alga. It is a photosynthetic organism that can exist in almost all habitats found in polar, tropical, and temperate regions. It can either exist in a symbiotic relationship with fungi in the form of lichen or it can survive independently as a free-living organism alone or in colonies. Trebouxia is the most common photobiont in extant lichens. It is a primary producer of marine, freshwater and terrestrial ecosystems. It uses carotenoids and chlorophyll a and b to harvest energy from the sun and provide nutrients to various animals and insects.

<span class="mw-page-title-main">Triparma</span> Genus of single-celled organisms

Triparma is a genus of unicellular algae in the family Triparmaceae in the order Parmales. They form siliceous plates on the cell surface that aid in identification. Triparma is distinguished by its possession of three shield plates, three triradiate girdle plates, a triradiate girdle plate with notched ends, and a small ventral plate. It was first described by Booth & Marchant in 1987 and the holotype is Triparma columacea.

<span class="mw-page-title-main">Parmales</span> Order of algae

The Parmales are an order of marine microalgae within the Bolidophyceae class. They are found worldwide and characterized by a cell wall composed of 5-8 interlocking silica plates with distinct forms. They were initially thought to be loricate choanoflagellates but were shown to be a separate phyla entirely upon the discovery of chloroplasts, placing it among the photosynthetic stramenopiles.

<span class="mw-page-title-main">Tetraparma</span> Genus of single-celled organisms

Tetraparma is a genus of unicellular algae in the family Triparmaceae in the order Parmales. They form siliceous plates on the cell surface that aid in identification. Tetraparma is distinguished by its possession of three shield plates that may have everted rims, three triradiate girdle plates, a triradiate dorsal plate with notched ends, and a large ventral plate. It was first described by Booth & Marchant in 1987 and the holotype is Triparma columacea.

<i>Chloroparvula</i> Genus of green algae

Chloroparvula is a genus of green algae in the class Chloropicophyceae.

<i>Chloropicon</i> Genus of green algae

Chloropicon is a genus of green algae in the class Chloropicophyceae.

Elongatocystis is an autotrophic green alga in the Oocystaceae family that is defined by its elongated type cell. This genus was discovered in a rockpool at Belvedere River, Mpumalanga, South Africa and described by Krienitz and Bock in 2011 along with two other strains of Oocystaceae. Its discovery and genetic analysis determined that Oocystis ecballocystiformis should be removed. In its place, the genus Elongatocystis was proposed to more accurately represent the phylogenetic tree.

References

Creative Commons by small.svg  This article incorporates "Chloropicophyceae, a new class of picophytoplanktonic prasinophytes" text from this source, which isby Adriana Lopes dos Santos, Thibaut Pollina, Priscilla Gourvil, Erwan Corre, Dominique Marie, José Luis Garrido, Francisco Rodríguez, Mary-Hélène Noël, Daniel Vaulot and Wenche Eikrem available under the CC BY 4.0 license.

  1. 1 2 3 4 Lopes dos Santos, Adriana; et al. (2017). "Chloropicophyceae, a new class of picophytoplanktonic prasinophytes". Sci Rep. 7 (1): 14019. Bibcode:2017NatSR...714019L. doi:10.1038/s41598-017-12412-5. PMC   5656628 . PMID   29070840.