Cobweb model

Last updated

The cobweb model or cobweb theory is an economic model that explains why prices may be subjected to periodic fluctuations in certain types of markets. It describes cyclical supply and demand in a market where the amount produced must be chosen before prices are observed. Producers' expectations about prices are assumed to be based on observations of previous prices. Nicholas Kaldor analyzed the model in 1934, coining the term "cobweb theorem" (see Kaldor, 1938 and Pashigian, 2008), citing previous analyses in German by Henry Schultz and Umberto Ricci.

Contents

The model

The convergent case: each new outcome is successively closer to the intersection of supply and demand. Cobweb theory (convergent).svg
The convergent case: each new outcome is successively closer to the intersection of supply and demand.
The divergent case: each new outcome is successively further from the intersection of supply and demand. Cobweb theory (divergent).svg
The divergent case: each new outcome is successively further from the intersection of supply and demand.

The cobweb model is generally based on a time lag between supply and demand decisions. Agricultural markets are a context where the cobweb model might apply, since there is a lag between planting and harvesting (Kaldor, 1934, p. 133–134 gives two agricultural examples: rubber and corn). Suppose for example that as a result of unexpectedly bad weather, farmers go to market with an unusually small crop of strawberries. This shortage, equivalent to a leftward shift in the market's supply curve, results in high prices. If farmers expect these high price conditions to continue, then in the following year, they will raise their production of strawberries relative to other crops. Therefore, when they go to market the supply will be high, resulting in low prices. If they then expect low prices to continue, they will decrease their production of strawberries for the next year, resulting in high prices again.

This process is illustrated by the adjacent diagrams. The equilibrium price is at the intersection of the supply and demand curves. A poor harvest in period 1 means supply falls to Q1, so that prices rise to P1. If producers plan their period 2 production under the expectation that this high price will continue, then the period 2 supply will be higher, at Q2. Prices therefore fall to P2 when they try to sell all their output. As this process repeats itself, oscillating between periods of low supply with high prices and then high supply with low prices, the price and quantity trace out a spiral. They may spiral inwards, as in the top figure, in which case the economy converges to the equilibrium where supply and demand cross; or they may spiral outwards, with the fluctuations increasing in magnitude.

The cobweb model can have two types of outcomes:

Two other possibilities are:

In either of the first two scenarios, the combination of the spiral and the supply and demand curves often looks like a cobweb, hence the name of the theory.

The Gori et al. group finds that cobwebs experience Hopf bifurcations, in Gori et al. 2014, Gori et al. 2015a, and Gori et al. 2015b. [1]

Elasticities versus slopes

When supply and demand are linear functions the outcomes of the cobweb model are stated above in terms of slopes, but they are more commonly described in terms of elasticities. The convergent case requires that the slope of the (inverse) supply curve be greater than the absolute value of the slope of the (inverse) demand curve:

In standard microeconomics terminology, define the elasticity of supply as , and the elasticity of demand as . If we evaluate these two elasticities at the equilibrium point, that is and , then we see that the convergent case requires

whereas the divergent case requires

In words, the convergent case occurs when the demand curve is more elastic than the supply curve, at the equilibrium point. The divergent case occurs when the supply curve is more elastic than the demand curve, at the equilibrium point (see Kaldor, 1934, page 135, propositions (i) and (ii).)

Role of expectations

One reason to be skeptical of this model's predictions is that it assumes producers are extremely shortsighted. Assuming that farmers look back at the most recent prices in order to forecast future prices might seem very reasonable, but this backward-looking forecasting (which is called adaptive expectations) turns out to be crucial for the model's fluctuations. When farmers expect high prices to continue, they produce too much and therefore end up with low prices, and vice versa.

In the stable case, this may not be an unbelievable outcome, since the farmers' prediction errors (the difference between the price they expect and the price that actually occurs) become smaller every period. In this case, after several periods prices and quantities will come close to the point where supply and demand cross, and predicted prices will be very close to actual prices. But in the unstable case, the farmers' errors get larger every period. This seems to indicate that adaptive expectations is a misleading assumption—how could farmers fail to notice that last period's price is not a good predictor of this period's price?

The fact that agents with adaptive expectations may make ever-increasing errors over time has led many economists to conclude that it is better to assume rational expectations, that is, expectations consistent with the actual structure of the economy. However, the rational expectations assumption is controversial since it may exaggerate agents' understanding of the economy. The cobweb model serves as one of the best examples to illustrate why understanding expectation formation is so important for understanding economic dynamics, and also why expectations are so controversial in recent economic theory.

The "Anpassung nach Unten" and "Schraube nach Unten" argument

The German concepts which translate literally "adjustment to lower" and "screw to lower" are known from the works of Hans-Peter Martin and Harald Schumann, the authors of The Global Trap (1997). Martin and Schumann see the process to worsened living standards as screw-shaped. Mordecai Ezekiel's The Cobweb Theorem (1938) illustrate a screw-shaped expectations-driven process. [2] Eino Haikala has analyzed Ezekiel's work among others, and clarified that time constitutes the axis of the screw-shape. [3] Thus Martin and Schumann point out that the cobweb theorem works to worsen standards of living as well. The idea of expectations-variation and thus modeled and induced expectations is shown clearly in Oskar Morgenstern's Vollkommene Voraussicht und Wirtschaftliches Gleichgewicht. [4] This article shows also that the concept of perfect foresight (vollkommene Voraussicht) is not a Robert E. Lucas or rational expectations invention but rests in game theory, Morgenstern and John von Neumann being the authors of Theory of Games and Economic Behavior (1944). This does not mean that the rational expectations hypothesis (REH) is not game theory or separate from the cobweb theorem, but vice versa. The "there must be" a random component claim by Alan A. Walters alone shows that rational (consistent) expectations is game theory, [5] since the component is there to create an illusion of random walk.

Alan A. Walters (1971) also claims that "extrapolators" are "unsophisticated", thus differentiating between prediction and forecasting. Using induced modeled expectations is prediction, not forecasting, unless these expectations are based on extrapolation. A prediction does not have to even try to be true. To avoid a prediction to be falsified it has to be, according to Franco Modigliani and Emile Grunberg's article "The Predictability of Social Events", kept private. [6] Thus public prediction serves private one in REH. Haikala (1956) claims that cobweb theorem is a theorem of deceiving farmers, thus seeing cobweb theorem as a kind of rational or rather, consistent, expectations model with a game-theoretic feature. This makes sense[ according to whom? ] when considering the argument of Hans-Peter Martin and Harald Schumann. The truth-value of a prediction is one measure in differentiating between non-deceiving and deceiving models. In Martin and Schumann's context, a claim that anti-Keynesian policies lead to a greater welfare of the majority of mankind should be analyzed in terms of truth. One way to do this is to investigate past historical data. This is contrary to the principles of REH, where the measure of policies is an economic model, [7] not reality, and credibility, not truth. The importance of intellectual climate emphasized in Friedmans' work [8] means that the credibility of a prediction can be increased by manipulating public opinion, despite its lack of truth. Morgenstern (1935) states that when varying expectations, the expectation of future has always to be positive (and prediction has to be credible).

Expectation is a dynamic component in both REH and cobweb theorem, and the question of expectation formation is the key to Hans-Peter Martin's and Harald Schumann's argument, which deals with trading current welfare for expected future welfare with actually worsening policies in the middle. This 'in order to achieve that then we have to do this now' is the key in Bertrand de Jouvenel's work. Cobweb theorem and the rational (consistent) expectations hypothesis are part of welfare economics which according to Martin and Schumann's argument act now to worsen the welfare of the majority of mankind. Nicholas Kaldor's work The Scourge of Monetarism is an analysis of how the policies described by Martin and Schumann came to the United Kingdom.

Evidence

Livestock herds

The cobweb model has been interpreted as an explanation of fluctuations in various livestock markets, like those documented by Arthur Hanau in German hog markets; see Pork cycle. However, Rosen et al. (1994) proposed an alternative model which showed that because of the three-year life cycle of beef cattle, cattle populations would fluctuate over time even if ranchers had perfectly rational expectations. [9]

Human experimental data

In 1989, Wellford conducted twelve experimental sessions each conducted with five participants over thirty periods simulating the stable and unstable cases. Her results show that the unstable case did not result in the divergent behavior we see with cobweb expectations but rather the participants converged toward the rational expectations equilibrium. However, the price path variance in the unstable case was greater than that in the stable case (and the difference was shown to be statistically significant).

One way of interpreting these results is to say that in the long run, the participants behaved as if they had rational expectations, but that in the short run they made mistakes. These mistakes caused larger fluctuations in the unstable case than in the stable case.

Housing sector in Israel

The residential construction sector of Israel was, primarily as a result of waves of immigration, and still is, a principal factor in the structure of the business cycles in Israel. The increasing population, financing methods, higher income, and investment needs converged and came to be reflected through the skyrocketing demand for housing. On the other hand, technology, private and public entrepreneurship, the housing inventory and the availability of workforce have converged on the supply side. The position and direction of the housing sector in the business cycle can be identified by using a cobweb model.

See also

Related Research Articles

<span class="mw-page-title-main">Macroeconomics</span> Study of an economy as a whole

Macroeconomics is a branch of economics that deals with the performance, structure, behavior, and decision-making of an economy as a whole. This includes regional, national, and global economies. Macroeconomists study topics such as output/GDP and national income, unemployment, price indices and inflation, consumption, saving, investment, energy, international trade, and international finance.

<span class="mw-page-title-main">Perfect competition</span> Market structure in which firms are price takers for a homogeneous product

In economics, specifically general equilibrium theory, a perfect market, also known as an atomistic market, is defined by several idealizing conditions, collectively called perfect competition, or atomistic competition. In theoretical models where conditions of perfect competition hold, it has been demonstrated that a market will reach an equilibrium in which the quantity supplied for every product or service, including labor, equals the quantity demanded at the current price. This equilibrium would be a Pareto optimum.

<span class="mw-page-title-main">Supply and demand</span> Economic model of price determination in a market

In microeconomics, supply and demand is an economic model of price determination in a market. It postulates that, holding all else equal, the unit price for a particular good or other traded item in a perfectly competitive market, will vary until it settles at the market-clearing price, where the quantity demanded equals the quantity supplied such that an economic equilibrium is achieved for price and quantity transacted. The concept of supply and demand forms the theoretical basis of modern economics.

<span class="mw-page-title-main">Economic surplus</span> Concept in economics

In mainstream economics, economic surplus, also known as total welfare or total social welfare or Marshallian surplus, is either of two related quantities:

Rational expectations is an economic theory that seeks to infer the macroeconomic consequences of individuals' decisions based on all available knowledge. It assumes that individuals' actions are based on the best available economic theory and information.

New Keynesian economics is a school of macroeconomics that strives to provide microeconomic foundations for Keynesian economics. It developed partly as a response to criticisms of Keynesian macroeconomics by adherents of new classical macroeconomics.

<span class="mw-page-title-main">Index of economics articles</span>

This aims to be a complete article list of economics topics:

The Phillips curve is an economic model, named after Bill Phillips, that correlates reduced unemployment with increasing wages in an economy. While Phillips did not directly link employment and inflation, this was a trivial deduction from his statistical findings. Paul Samuelson and Robert Solow made the connection explicit and subsequently Milton Friedman and Edmund Phelps put the theoretical structure in place.

<span class="mw-page-title-main">Nicholas Kaldor</span> Hungarian-British economist

Nicholas Kaldor, Baron Kaldor, born Káldor Miklós, was a Hungarian-born British economist. He developed the "compensation" criteria called Kaldor–Hicks efficiency for welfare comparisons (1939), derived the cobweb model, and argued for certain regularities observable in economic growth, which are called Kaldor's growth laws. Kaldor worked alongside Gunnar Myrdal to develop the key concept Circular Cumulative Causation, a multicausal approach where the core variables and their linkages are delineated.

<span class="mw-page-title-main">Law of demand</span> Fundamental principle in microeconomics

In microeconomics, the law of demand is a fundamental principle which states that there is an inverse relationship between price and quantity demanded. In other words, "conditional on all else being equal, as the price of a good increases (↑), quantity demanded will decrease (↓); conversely, as the price of a good decreases (↓), quantity demanded will increase (↑)". Alfred Marshall worded this as: "When we say that a person's demand for anything increases, we mean that he will buy more of it than he would before at the same price, and that he will buy as much of it as before at a higher price". The law of demand, however, only makes a qualitative statement in the sense that it describes the direction of change in the amount of quantity demanded but not the magnitude of change.

<span class="mw-page-title-main">Comparative statics</span> Thought experiments

In economics, comparative statics is the comparison of two different economic outcomes, before and after a change in some underlying exogenous parameter.

<span class="mw-page-title-main">Marginal revenue</span> Additional total revenue generated by increasing product sales by 1 unit

Marginal revenue is a central concept in microeconomics that describes the additional total revenue generated by increasing product sales by 1 unit. Marginal revenue is the increase in revenue from the sale of one additional unit of product, i.e., the revenue from the sale of the last unit of product. It can be positive or negative. Marginal revenue is an important concept in vendor analysis. To derive the value of marginal revenue, it is required to examine the difference between the aggregate benefits a firm received from the quantity of a good and service produced last period and the current period with one extra unit increase in the rate of production. Marginal revenue is a fundamental tool for economic decision making within a firm's setting, together with marginal cost to be considered.

Bertrand competition is a model of competition used in economics, named after Joseph Louis François Bertrand (1822–1900). It describes interactions among firms (sellers) that set prices and their customers (buyers) that choose quantities at the prices set. The model was formulated in 1883 by Bertrand in a review of Antoine Augustin Cournot's book Recherches sur les Principes Mathématiques de la Théorie des Richesses (1838) in which Cournot had put forward the Cournot model. Cournot's model argued that each firm should maximise its profit by selecting a quantity level and then adjusting price level to sell that quantity. The outcome of the model equilibrium involved firms pricing above marginal cost; hence, the competitive price. In his review, Bertrand argued that each firm should instead maximise its profits by selecting a price level that undercuts its competitors' prices, when their prices exceed marginal cost. The model was not formalized by Bertrand; however, the idea was developed into a mathematical model by Francis Ysidro Edgeworth in 1889.

<span class="mw-page-title-main">Pork cycle</span>

In economics, the term pork cycle, hog cycle, or cattle cycle describes the phenomenon of cyclical fluctuations of supply and prices in livestock markets. It was first observed in 1925 in pig markets in the US by Mordecai Ezekiel and in Europe in 1927 by the German scholar Arthur Hanau.

Cournot competition is an economic model used to describe an industry structure in which companies compete on the amount of output they will produce, which they decide on independently of each other and at the same time. It is named after Antoine Augustin Cournot (1801–1877) who was inspired by observing competition in a spring water duopoly. It has the following features:

<span class="mw-page-title-main">Sonnenschein–Mantel–Debreu theorem</span> Economic theorem

The Sonnenschein–Mantel–Debreu theorem is an important result in general equilibrium economics, proved by Gérard Debreu, Rolf Mantel, and Hugo F. Sonnenschein in the 1970s. It states that the excess demand curve for an exchange economy populated with utility-maximizing rational agents can take the shape of any function that is continuous, has homogeneity degree zero, and is in accordance with Walras's law. This implies that the excess demand function does not take a well-behaved form even if each agent has a well-behaved utility function. Market processes will not necessarily reach a unique and stable equilibrium point.

Competitive equilibrium is a concept of economic equilibrium, introduced by Kenneth Arrow and Gérard Debreu in 1951, appropriate for the analysis of commodity markets with flexible prices and many traders, and serving as the benchmark of efficiency in economic analysis. It relies crucially on the assumption of a competitive environment where each trader decides upon a quantity that is so small compared to the total quantity traded in the market that their individual transactions have no influence on the prices. Competitive markets are an ideal standard by which other market structures are evaluated.

<span class="mw-page-title-main">History of macroeconomic thought</span>

Macroeconomic theory has its origins in the study of business cycles and monetary theory. In general, early theorists believed monetary factors could not affect real factors such as real output. John Maynard Keynes attacked some of these "classical" theories and produced a general theory that described the whole economy in terms of aggregates rather than individual, microeconomic parts. Attempting to explain unemployment and recessions, he noticed the tendency for people and businesses to hoard cash and avoid investment during a recession. He argued that this invalidated the assumptions of classical economists who thought that markets always clear, leaving no surplus of goods and no willing labor left idle.

The Lucas aggregate supply function or Lucas "surprise" supply function, based on the Lucas imperfect information model, is a representation of aggregate supply based on the work of new classical economist Robert Lucas. The model states that economic output is a function of money or price "surprise". The model accounts for the empirically based trade off between output and prices represented by the Phillips curve, but the function breaks from the Phillips curve since only unanticipated price level changes lead to changes in output. The model accounts for empirically observed short-run correlations between output and prices, but maintains the neutrality of money in the long-run. The policy ineffectiveness proposition extends the model by arguing that, since people with rational expectations cannot be systematically surprised by monetary policy, monetary policy cannot be used to systematically influence the economy.

In microeconomics, excess demand, also known as shortage, is a phenomenon where the demand for goods and services exceeds that which the firms can produce.

References

  1. Chen, Churong; Bohner, Martin; Jia, Baoguo (2020). "Caputo fractional continuous cobweb models". Journal of Computational and Applied Mathematics . 374. Elsevier BV: 112734. doi:10.1016/j.cam.2020.112734. ISSN   0377-0427. S2CID   213816027.Gori, Luca; Guerrini, Luca; Sodini, Mauro (2014). "Hopf Bifurcation in a Cobweb Model with Discrete Time Delays". Discrete Dynamics in Nature and Society . 2014. Hindawi Limited: 1–8. doi: 10.1155/2014/137090 . hdl: 11568/538470 . ISSN   1026-0226.
  2. Ezekiel, Mordecai: "The Cobweb Theorem". The Quarterly Journal of Economics, vol. 52, No. 2 (Feb. 1938) pp. 255–280.
  3. Haikala, Eino: Maatalouden ominaissuhdanteet ja cobweb-teoria (1956). Pellervo.
  4. Morgenstern, Oskar: Vollkommene Voraussicht und wirtschaftliches Gleichgewicht. Zeitschrift für Nationalekonomie Bd. 6 (1935) pp. 337–357.
  5. Walters, Alan A.: "Consistent Expectations, Distributed Lags and the Quantity Theory". The Economic Journal 81 (322) (Feb. 1971) pp. 273–281.
  6. Modogliani, Franco & Grunberg, Emile: "The Predictability of Social Events". Journal of Political Economy, Vol. 62, No. 6 (Dec. 1954) pp. 465–478.
  7. Kydland, Finn E. & Prescott, Edward: Rules Rather than Discretion: The Inconsistency of Optimal Plans. Journal of Political Economy, Vol. 85, No. 3 (Jun. 1977) pp. 473–492.
  8. Friedman, Milton & Friedman, Rose: Free to Choose.
  9. Edward Lotterman, "In shipping, cattle and some careers, cycles play out", Twin Cities Pioneer Press, 4. April 2012: Real World Economics

Sources