Cold blob

Last updated
The cold blob visible on NASA's global mean temperatures for 2015, then the warmest year in NASA's temperature series - colors indicate temperature anomalies (NASA/NOAA; 20 January 2016). 16-008-NASA-2015RecordWarmGlobalYearSince1880-20160120.png
The cold blob visible on NASA's global mean temperatures for 2015, then the warmest year in NASA's temperature series – colors indicate temperature anomalies (NASA/NOAA; 20 January 2016).

The cold blob in the North Atlantic (also called the North Atlantic warming hole [2] [3] ) describes a cold temperature anomaly of ocean surface waters, affecting the Atlantic Meridional Overturning Circulation (AMOC) which is part of the thermohaline circulation, possibly related to global warming-induced melting of the Greenland ice sheet.

Contents

General

AMOC is driven by ocean temperature and salinity differences. The major possible mechanism causing the cold ocean surface temperature anomaly is based on the fact that freshwater decreases ocean water salinity, and through this process prevents colder waters sinking. Observed freshwater increase originates probably from Greenland ice melt. [4]

Research

2015 and earlier

AMOC-Index since 900 CE with pronounced slowdown since ~1850; Rahmstorf et al. (2015) Amoc-index.svg
AMOC-Index since 900 CE with pronounced slowdown since ~1850; Rahmstorf et al. (2015)

Climate scientists Michael Mann of Penn State and Stefan Rahmstorf from the Potsdam Institute for Climate Impact Research suggested that the observed cold pattern during years of temperature records is a sign that the Atlantic Ocean's Meridional overturning circulation (AMOC) may be weakening. They published their findings, and concluded that the AMOC circulation shows exceptional slowdown in the last century, and that Greenland melt is a possible contributor. [5] Tom Delworth of NOAA suggested that natural variability, which includes different modes, here namely the North Atlantic Oscillation and the Atlantic Multidecadal Oscillation through wind driven ocean temperatures are also a factor. A 2014 study by Jon Robson et al. from the University of Reading concluded about the anomaly, "...suggest that a substantial change in the AMOC is unfolding now." [4] [6] Another study by Didier Swingedouw concluded that the slowdown of AMOC in the 1970s may have been unprecedented over the last millennium. [7]

2016

A study published in 2016, by researchers from the University of South Florida, Canada and the Netherlands, used GRACE satellite data to estimate freshwater flux from Greenland. They concluded that freshwater runoff is accelerating, and could eventually cause a disruption of AMOC in the future, which would affect Europe and North America. [8]

Another study published in 2016, found further evidence for a considerable impact from sea level rise for the U.S. East Coast. The study confirms earlier research findings which identified the region as a hotspot for rising seas, with a potential to divert 3–4 times higher than the global average sea level rise rate. The researchers attribute the possible increase to an ocean circulation mechanism called deep water formation, which is reduced due to AMOC slow down, leading to more warmer water pockets below the surface. Additionally, the study noted: "Our results suggest that higher carbon emission rates also contribute to increased [sea level rise] in this region compared to the global average". [9]

Background

In 2005, British researchers noticed that the net flow of the northern Gulf Stream had decreased by about 30% since 1957. Coincidentally, scientists at Woods Hole had been measuring the freshening of the North Atlantic as Earth becomes warmer. Their findings suggested that precipitation increases in the high northern latitudes, and polar ice melts as a consequence. By flooding the northern seas with excessive fresh water, global warming could, in theory, divert the Gulf Stream waters that usually flow northward, past the British Isles and Norway, and cause them to instead circulate toward the equator. Were this to happen, Europe's climate would be seriously impacted. [10] [11] [12]

Don Chambers from the USF College of Marine Science mentioned, "The major effect of a slowing AMOC is expected to be cooler winters and summers around the North Atlantic, and small regional increases in sea level on the North American coast." [8] James Hansen and Makiko Sato stated, "AMOC slowdown that causes cooling ~1°C and perhaps affects weather patterns is very different from an AMOC shutdown that cools the North Atlantic several degrees Celsius; the latter would have dramatic effects on storms and be irreversible on the century time scale." [13] Downturn of the Atlantic meridional overturning circulation, has been tied to extreme regional sea level rise. [14]

Measurements

Since 2004 the RAPID program monitors the ocean circulation. [4]

See also

Related Research Articles

<span class="mw-page-title-main">North Atlantic Current</span> Current of the Atlantic Ocean

The North Atlantic Current (NAC), also known as North Atlantic Drift and North Atlantic Sea Movement, is a powerful warm western boundary current within the Atlantic Ocean that extends the Gulf Stream northeastward.

<span class="mw-page-title-main">North Atlantic Deep Water</span> Deep water mass formed in the North Atlantic Ocean

North Atlantic Deep Water (NADW) is a deep water mass formed in the North Atlantic Ocean. Thermohaline circulation of the world's oceans involves the flow of warm surface waters from the southern hemisphere into the North Atlantic. Water flowing northward becomes modified through evaporation and mixing with other water masses, leading to increased salinity. When this water reaches the North Atlantic it cools and sinks through convection, due to its decreased temperature and increased salinity resulting in increased density. NADW is the outflow of this thick deep layer, which can be detected by its high salinity, high oxygen content, nutrient minima, high 14C/12C, and chlorofluorocarbons (CFCs).

<span class="mw-page-title-main">Ocean current</span> Directional mass flow of oceanic water generated by external or internal forces

An ocean current is a continuous, directed movement of seawater generated by a number of forces acting upon the water, including wind, the Coriolis effect, breaking waves, cabbeling, and temperature and salinity differences. Depth contours, shoreline configurations, and interactions with other currents influence a current's direction and strength. Ocean currents are primarily horizontal water movements.

<span class="mw-page-title-main">Thermohaline circulation</span> Part of large-scale ocean circulation

Thermohaline circulation (THC) is a part of the large-scale ocean circulation that is driven by global density gradients created by surface heat and freshwater fluxes. The adjective thermohaline derives from thermo- referring to temperature and -haline referring to salt content, factors which together determine the density of sea water. Wind-driven surface currents travel polewards from the equatorial Atlantic Ocean, cooling en route, and eventually sinking at high latitudes. This dense water then flows into the ocean basins. While the bulk of it upwells in the Southern Ocean, the oldest waters upwell in the North Pacific. Extensive mixing therefore takes place between the ocean basins, reducing differences between them and making the Earth's oceans a global system. The water in these circuits transport both energy and mass around the globe. As such, the state of the circulation has a large impact on the climate of the Earth.

<span class="mw-page-title-main">Dansgaard–Oeschger event</span> Rapid climate fluctuation in the last glacial period.

Dansgaard–Oeschger events, named after palaeoclimatologists Willi Dansgaard and Hans Oeschger, are rapid climate fluctuations that occurred 25 times during the last glacial period. Some scientists say that the events occur quasi-periodically with a recurrence time being a multiple of 1,470 years, but this is debated. The comparable climate cyclicity during the Holocene is referred to as Bond events.

<span class="mw-page-title-main">Greenland ice sheet</span> Vast body of ice in Greenland

The Greenland ice sheet is a vast body of ice covering 1,710,000 square kilometres (660,000 sq mi), roughly near 80% of the surface of Greenland. It is sometimes referred to as an ice cap, or under the term inland ice, or its Danish equivalent, indlandsis. An acronym, GIS, is frequently used in the scientific literature.

<span class="mw-page-title-main">Abrupt climate change</span>

An abrupt climate change occurs when the climate system is forced to transition at a rate that is determined by the climate system energy-balance, and which is more rapid than the rate of change of the external forcing, though it may include sudden forcing events such as meteorite impacts. Abrupt climate change therefore is a variation beyond the variability of a climate. Past events include the end of the Carboniferous Rainforest Collapse, Younger Dryas, Dansgaard-Oeschger events, Heinrich events and possibly also the Paleocene–Eocene Thermal Maximum. The term is also used within the context of climate change to describe sudden climate change that is detectable over the time-scale of a human lifetime, possibly as the result of feedback loops within the climate system or tipping points.

The Bølling–Allerød interstadial, also called the Late Glacial Interstadial, was an abrupt warm and moist interstadial period that occurred during the final stages of the Last Glacial Period. This warm period ran from 14,690 to 12,890 years before the present (BP). It began with the end of the cold period known as the Oldest Dryas, and ended abruptly with the onset of the Younger Dryas, a cold period that reduced temperatures back to near-glacial levels within a decade.

<span class="mw-page-title-main">Atlantic meridional overturning circulation</span> System of currents in the Atlantic Ocean

The Atlantic meridional overturning circulation (AMOC) is part of a global thermohaline circulation in the oceans and is the zonally integrated component of surface and deep currents in the Atlantic Ocean. It is characterized by a northward flow of warm, salty water in the upper layers of the Atlantic, and a southward flow of colder, deep waters. These "limbs" are linked by regions of overturning in the Nordic and Labrador Seas and the Southern Ocean, although the extent of overturning in the Labrador Sea is disputed. The AMOC is an important component of the Earth's climate system, and is a result of both atmospheric and thermohaline drivers.

<span class="mw-page-title-main">Ocean heat content</span> Thermal energy stored in ocean water

Ocean heat content (OHC) is the energy absorbed and stored by oceans. Between 1971 and 2018, the rise in OHC accounts for over 90% of Earth’s excess thermal energy from global heating. The main driver of this OHC increase was most likely anthropogenic forcing via rising greenhouse gas emissions. By 2020, about one third of the added energy had propagated to depths below 700 meters. Ocean heat content and sea level rise are important indicators of climate change. The term is used in oceanography and climatology.

<span class="mw-page-title-main">Tipping points in the climate system</span> Large and possibly irreversible changes in the climate system

In climate science, a tipping point is a critical threshold that, when crossed, leads to large and often irreversible changes in the climate system. If tipping points are crossed, they are likely to have severe impacts on human society. Tipping behaviour is found across the climate system, in ecosystems, ice sheets, and the circulation of the ocean and atmosphere.

<span class="mw-page-title-main">Gulf Stream</span> Warm Atlantic Ocean current

The Gulf Stream, together with its northern extension the North Atlantic Drift, is a warm and swift Atlantic ocean current that originates in the Gulf of Mexico and flows through the Straits of Florida and up the eastern coastline of the United States then veers east near 36 latitude and moves toward Northwest Europe as the North Atlantic Current. The process of western intensification causes the Gulf Stream to be a northwards accelerating current off the east coast of North America. At about 40°0′N30°0′W, it splits in two, with the northern stream, the North Atlantic Drift, crossing to Northern Europe and the southern stream, the Canary Current, recirculating off West Africa.

Deglaciation is the transition from full glacial conditions during ice ages, to warm interglacials, characterized by global warming and sea level rise due to change in continental ice volume. Thus, it refers to the retreat of a glacier, an ice sheet or frozen surface layer, and the resulting exposure of the Earth's surface. The decline of the cryosphere due to ablation can occur on any scale from global to localized to a particular glacier. After the Last Glacial Maximum, the last deglaciation begun, which lasted until the early Holocene. Around much of Earth, deglaciation during the last 100 years has been accelerating as a result of climate change, partly brought on by anthropogenic changes to greenhouse gases.

The Great Salinity Anomaly (GSA) originally referred to an event in the late 1960s to early 1970s where a large influx of freshwater from the Arctic Ocean led to a salinity anomaly in the northern North Atlantic Ocean, which affected the Atlantic meridional overturning circulation. Since then, the term "Great Salinity Anomaly" has been applied to successive occurrences of the same phenomenon, including the Great Salinity Anomaly of the 1980s and the Great Salinity Anomaly of the 1990s. The Great Salinity Anomalies were advective events, propagating to different sea basins and areas of the North Atlantic, and is on the decadal-scale for the anomalies in the 1970s, 1980s, and 1990s.

Explosive volcanic eruptions affect the global climate in several ways.

<span class="mw-page-title-main">Global surface temperature</span> Average temperature of the Earths surface

In earth science, global surface temperature is calculated by averaging the temperature at the surface of the sea and air temperature over land. Periods of global cooling and global warming have alternated during Earth's history.

<span class="mw-page-title-main">Overturning in the Subpolar North Atlantic Program</span> International research project

The Overturning in the Subpolar North Atlantic Program (OSNAP) is an international project designed to study the mechanistic link between water mass transformation at high latitudes and the meridional overturning circulation in the North Atlantic (AMOC) on interannual time scales. Though this linkage is evident in climate models on decadal time scales, to date there has been no clear demonstration of AMOC variability in response to changes in deep water formation on interannual and decadal time scales. OSNAP intends to fill that gap by providing a continuous record of the trans-basin fluxes of heat, mass and freshwater for a comparison to records of convective activity and water mass transformation at high latitudes in the North Atlantic.

The Atlantic meridional overturning circulation (AMOC) is a large system of ocean currents, like a conveyor belt. It is driven by differences in temperature and salt content and it is an important component of the climate system. However, the AMOC is not a static feature of global circulation. It is sensitive to changes in temperature, salinity and atmospheric forcings. Climate reconstructions from δ18O proxies from Greenland reveal an abrupt transition in global temperature about every 1470 years. These changes may be due to changes in ocean circulation, which suggests that there are two equilibria possible in the AMOC. Stommel made a two-box model in 1961 which showed two different states of the AMOC are possible on a single hemisphere. Stommel’s result with an ocean box model has initiated studies using three dimensional ocean circulation models, confirming the existence of multiple equilibria in the AMOC.

<span class="mw-page-title-main">Southern Ocean overturning circulation</span> Ocean circulation

The Southern Ocean overturning circulation is a two-cell system in the Southern Ocean that connects different water basins within the global circulation. It is driven by upwelling and downwelling, which are a result of the physical ocean processes that are influenced by freshwater fluxes and wind stress. The global ocean circulation is an essential mechanism in our global climate system due to its influence on the global heat, fresh water and carbon budgets. The upwelling in the upper cell is associated with mid-deep water that is brought to the surface, whereas the upwelling in the lower cell is linked to the fresh and abyssal waters around Antarctica. Around 27 ± 7 Sverdrup (Sv) of deep water wells up to the surface in the Southern Ocean. This upwelled water is partly transformed to lighter water and denser water, respectively 22 ± 4 Sv and 5 ± 5 Sv. The densities of these waters change due to heat and buoyancy fluxes which result in upwelling in the upper cell and downwelling in the lower cell.

Oceanic freshwater fluxes are defined as the transport of non saline water between the oceans and the other components of the Earth's system. These fluxes have an impact on the local ocean properties, as well as on the large scale circulation patterns.

References

  1. Brown, Dwayne; Cabbage, Michael; McCarthy, Leslie; Norton, Karen (20 January 2016). "NASA, NOAA Analyses Reveal Record-Shattering Global Warm Temperatures in 2015". NASA . Retrieved 21 January 2016.
  2. "North Atlantic warming hole impacts jet stream". ScienceDaily. Retrieved 2019-04-24.
  3. "If you doubt that the AMOC has weakened, read this". RealClimate. 28 May 2018. Retrieved 2019-04-24.
  4. 1 2 3 "Everything you need to know about the surprisingly cold 'blob' in the North Atlantic ocean". The Washington Post. 2015.
  5. 1 2 Stefan Rahmstorf, Jason E. Box, Georg Feulner, Michael E. Mann, Alexander Robinson, Scott Rutherford & Erik J. Schaffernicht (2015). "Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation" (PDF). Nature Climate Change. 5 (5): 475–480. Bibcode:2015NatCC...5..475R. doi:10.1038/nclimate2554.{{cite journal}}: CS1 maint: uses authors parameter (link)
  6. Jon Robson, Dan Hodson, Ed Hawkins, Rowan Sutton (2014). "Atlantic overturning in decline?" (PDF). Nature Geoscience. 7 (1): 2–3. Bibcode:2014NatGe...7....2R. doi:10.1038/ngeo2050. S2CID   29399465.{{cite journal}}: CS1 maint: uses authors parameter (link)
  7. Didier Swingedouw (2015). "Oceanography: Fresh news from the Atlantic". Nature Climate Change. 5 (5): 411–412. Bibcode:2015NatCC...5..411S. doi:10.1038/nclimate2626.
  8. 1 2 "Melting Greenland ice sheet may affect global ocean circulation, future climate". Phys.org. 2016.
  9. "Why the U.S. East Coast could be a major 'hotspot' for rising seas". The Washington Post. 2016.
  10. Garrison, Tom (2009). Oceanography: An Invitation to Marine Science (7th ed.). Cengage Learning. p. 582. ISBN   9780495391937.
  11. Bryden, H.L.; H.R. Longworth; S.A. Cunningham (2005). "Slowing of the Atlantic meridional overturning circulation at 25° N". Nature. 438 (7068): 655–657. Bibcode:2005Natur.438..655B. doi:10.1038/nature04385. PMID   16319889. S2CID   4429828.
  12. Curry, R.; Mauritzen, C. (2005). "Dilution of the northern North Atlantic in recent decades". Science. 308 (5729): 1772–1774. doi:10.1126/science.1109477. PMID   15961666. S2CID   36017668.
  13. James Hansen; Makiko Sato (2015). "Predictions Implicit in "Ice Melt" Paper and Global Implications".
  14. Jianjun Yin and Stephen Griffies (25 March 2015). "Extreme sea level rise event linked to AMOC downturn". CLIVAR. Archived from the original on 4 March 2016. Retrieved 22 January 2016.