Combat endurance

Last updated

Combat endurance is the time that a military system or unit can remain in combat before having to withdraw due to depleted resources. [1] The definition is not precise; for example the combat endurance of an aircraft, without qualification, is usually the time the aircraft can remain at an altitude suitable for combat, but in a particular theatre of operations it is the time it can remain in the area of combat. During the Battle of Britain, for example, the combat endurance of German fighters was the time they could remain over Britain, i.e., their inherent (endurance)less the time to travel from their base to Britain, and the time to return—about 15 minutes.

In addition to fuel the expenditure of ammunition and other consumables will reduce combat endurance, for example the limiting factors for a nuclear attack submarine are its torpedoes or for an nuclear aircraft carrier aviation fuel and aircraft munitions.

Military units will have a combat endurance, how long they can stay in the field for, measured by how long its logistics train can keep its component subunits supplied with food, fuel, ammunition and spare parts etc.

The United States Department of Defense and NATO define endurance as "the time an aircraft can continue flying, or a ground vehicle or ship can continue operating, under specified conditions, e.g., without refueling." [1]

Combat endurance training is also used for a system of physical training associated with stamina.

Improving combat endurance

The improvements of combat endurance are largely concerned with better efficiency to the current platforms and they aim to bridge the gap between the resources available today and the future. Technology, therefore, dominates this field [2] and one specific aspect that demonstrates this involves the technologies that enhance fuel efficiency. There are three improvement categories focused on this area:

The U.S. Department of Defense identified three breakthrough technologies that could significantly improve its capabilities and combat endurance and these are: 1) blended wing body for fixed-wing, heavy-lift aircraft; 2) variable speed tilt rotor for vertical lift aircraft; and, 3) blast bucket design concept for light armor ground vehicles. [3]

Related Research Articles

Aircraft Vehicle or machine that is able to fly by gaining support from the air

An aircraft is a vehicle or machine that is able to fly by gaining support from the air. It counters the force of gravity by using either static lift or by using the dynamic lift of an airfoil, or in a few cases the downward thrust from jet engines. Common examples of aircraft include airplanes, helicopters, airships, gliders, paramotors, and hot air balloons.

Fighter aircraft Military aircraft for air-to-air combat

Fighter aircraft are fixed-wing military aircraft designed primarily for air-to-air combat. In military conflict, the role of fighter aircraft is to establish air superiority of the battlespace. Domination of the airspace above a battlefield permits bombers and attack aircraft to engage in tactical and strategic bombing of enemy targets.

AAI RQ-7 Shadow American unmanned aerial vehicle

The AAI RQ-7 Shadow is an American unmanned aerial vehicle (UAV) used by the United States Army, Australian Army, Swedish Army, Turkish Air Force and Italian Army for reconnaissance, surveillance, target acquisition and battle damage assessment. Launched from a trailer-mounted pneumatic catapult, it is recovered with the aid of arresting gear similar to jets on an aircraft carrier. Its gimbal-mounted, digitally stabilized, liquid nitrogen-cooled electro-optical/infrared (EO/IR) camera relays video in real time via a C-band line-of-sight data link to the ground control station (GCS).

Military aircraft Aircraft designed or utilized for use in or support of military operations

A military aircraft is any fixed-wing or rotary-wing aircraft that is operated by a legal or insurrectionary armed service of any type. Military aircraft can be either combat or non-combat:

Aerospace Term used to refer to the atmosphere and outer space

Aerospace is a term used to collectively refer to the atmosphere and outer space. Aerospace activity is very diverse, with a multitude of commercial, industrial and military applications. Aerospace engineering consists of aeronautics and astronautics. Aerospace organizations research, design, manufacture, operate, or maintain aircraft and spacecraft.

<i>Nimitz</i>-class aircraft carrier US Navy nuclear-powered aircraft carrier class

The Nimitz class is a class of ten nuclear-powered aircraft carriers in service with the United States Navy. The lead ship of the class is named after World War II United States Pacific Fleet commander Fleet Admiral Chester W. Nimitz, who was the last living U.S. Navy officer to hold the rank. With an overall length of 1,092 ft (333 m) and full-load displacement of over 100,000 long tons (100,000 t), the Nimitz-class ships were the largest warships built and in service until USS Gerald R. Ford entered the fleet in 2017.

Flying wing Tailless fixed-wing aircraft that has no definite fuselage

A flying wing is a tailless fixed-wing aircraft that has no definite fuselage, with its crew, payload, fuel, and equipment housed inside the main wing structure. A flying wing may have various small protuberances such as pods, nacelles, blisters, booms, or vertical stabilizers.

Kirtland Air Force Base US Air Force base at Albuquerque, NM, US

Kirtland Air Force Base is a United States Air Force base located in the southeast quadrant of the Albuquerque, New Mexico urban area, adjacent to the Albuquerque International Sunport. The base was named for the early Army aviator Col. Roy C. Kirtland. The military and the international airport share the same runways, making ABQ a joint civil-military airport.

Pusher configuration Aircraft propellers behind their engine

In an aircraft with a pusher configuration, the propeller(s) are mounted behind their respective engine(s). According to British aviation author Bill Gunston, a "pusher propeller" is one mounted behind the engine, so that the drive shaft is in compression in normal operation.

Airplane Powered, flying vehicle with wings

An airplane or aeroplane is a fixed-wing aircraft that is propelled forward by thrust from a jet engine, propeller, or rocket engine. Airplanes come in a variety of sizes, shapes, and wing configurations. The broad spectrum of uses for airplanes includes recreation, transportation of goods and people, military, and research. Worldwide, commercial aviation transports more than four billion passengers annually on airliners and transports more than 200 billion tonne-kilometers of cargo annually, which is less than 1% of the world's cargo movement. Most airplanes are flown by a pilot on board the aircraft, but some are designed to be remotely or computer-controlled such as drones.

Hybrid airship

A hybrid airship is a powered aircraft that obtains some of its lift as a lighter-than-air (LTA) airship and some from aerodynamic lift as a heavier-than-air aerodyne.

Miniature UAV Unmanned aerial vehicle small enough to be man-portable

A miniature UAV, small UAV (SUAV), or drone is an unmanned aerial vehicle small enough to be man-portable. Smallest UAVs are called micro air vehicle.

Oblique wing

An oblique wing is a variable geometry wing concept. On an aircraft so equipped, the wing is designed to rotate on center pivot, so that one tip is swept forward while the opposite tip is swept aft. By changing its sweep angle in this way, drag can be reduced at high speed without sacrificing low speed performance. This is a variation on the classic swing-wing design, intended to simplify construction and retain the center of gravity as the sweep angle is changed.

Northrop Grumman Bat Unmanned aerial vehicle

The Northrop Grumman Bat is a medium-altitude unmanned air vehicle originally developed for use by the United States Armed Forces. Designed primarily as an intelligence "ISR" gathering tool, the Bat features 30 lb (14 kg) payload capacity that is unmatched in a 10 ft (3.0 m) wing span.

MMIST CQ-10 SnowGoose

The MMIST CQ-10A SnowGoose is a cargo delivery unmanned aerial vehicle that has reached IOC with the United States Armed Forces with the delivery of 15 vehicles. The SnowGoose UAV is produced by the Canadian company Mist Mobility Integrated Systems Technology (MMIST). The SnowGoose UAV is an application of MMIST's Sherpa autonomous GPS-guided parafoil delivery system and is intended for pin-point delivery of small cargo items to special forces. A fully loaded Snowgoose can carry a total of 272 kg (600 lb). The SnowGoose was originally designed for leaflet dispensing, but can support a variety of missions with its six modular cargo bays, each of which can carry pods for fuel, cargo, or electronics packages.

The United States Army DEVCOM Ground Vehicle Systems Center (GVSC), located in Warren, Michigan, is the United States Armed Forces' research and development facility for advanced technology in ground systems. It is part of the U.S. Army Combat Capabilities Development Command (DEVCOM), a major subordinate command of the U.S. Army Futures Command. GVSC shares its facilities with the United States Army Tank-automotive and Armaments Command (TACOM). Current technology focus areas include Ground Vehicle Power and Mobility (GVPM), Ground System Survivability and Force Protection, among others.

The AeroVironment Global Observer is a concept for a high-altitude, long endurance unmanned aerial vehicle, designed by AeroVironment (AV) to operate as a stratospheric geosynchronous satellite system with regional coverage.

Fuel economy in aircraft Aircraft fuel efficiency

The fuel economy in aircraft is the measure of the transport energy efficiency of aircraft. Efficiency is increased with better aerodynamics and by reducing weight, and with improved engine BSFC and propulsive efficiency or TSFC. Endurance and range can be maximized with the optimum airspeed, and economy is better at optimum altitudes, usually higher. An airline efficiency depends on its fleet fuel burn, seating density, air cargo and passenger load factor, while operational procedures like maintenance and routing can save fuel.

The period between 1945 and 1979 is sometimes called the post-war era or the period of the post-war political consensus. During this period, aviation was dominated by the arrival of the jet age. In civil aviation the jet engine allowed a huge expansion of commercial air travel, while in military aviation it led to the widespread introduction of supersonic aircraft.

Aircraft fuel tank

Aircraft fuel tanks are a major component of aircraft fuel systems. They can be classified into internal or external fuel tanks and can be further classified by method of construction or intended use. Safety aspects of aircraft fuel tanks were examined during the investigation of the 1996 TWA Flight 800 in-flight explosion accident.

References

  1. 1 2 Leonard, Barry (2011). Department of Defense Dictionary of Military and Associated Terms: As Amended Through April 2010. DIANE Publishing. p. 162. ISBN   978-1-4379-3820-3.
  2. Boon, Kristen (2009). Global Issues. Oxford: Oxford University Press. p. 68. ISBN   9780195398076.
  3. 1 2 Schlesinger, James (2008). More Fight -- Less Fuel: Report of the Defense Science Board Task Force on DoD Energy Strategy. Washington, D.C.: DIANE Publishing. p. 37. ISBN   9781437917147.