Combinatorial mirror symmetry

Last updated

A purely combinatorial approach to mirror symmetry was suggested by Victor Batyrev using the polar duality for -dimensional convex polyhedra. [1] The most famous examples of the polar duality provide Platonic solids: e.g., the cube is dual to octahedron, the dodecahedron is dual to icosahedron. There is a natural bijection between the -dimensional faces of a -dimensional convex polyhedron and -dimensional faces of the dual polyhedron and one has . In Batyrev's combinatorial approach to mirror symmetry the polar duality is applied to special -dimensional convex lattice polytopes which are called reflexive polytopes. [2]

It was observed by Victor Batyrev and Duco van Straten [3] that the method of Philip Candelas et al. [4] for computing the number of rational curves on Calabi–Yau quintic 3-folds can be applied to arbitrary Calabi–Yau complete intersections using the generalized -hypergeometric functions introduced by Israel Gelfand, Michail Kapranov and Andrei Zelevinsky [5] (see also the talk of Alexander Varchenko [6] ), where is the set of lattice points in a reflexive polytope .

The combinatorial mirror duality for Calabi–Yau hypersurfaces in toric varieties has been generalized by Lev Borisov [7] in the case of Calabi–Yau complete intersections in Gorenstein toric Fano varieties. Using the notions of dual cone and polar cone one can consider the polar duality for reflexive polytopes as a special case of the duality for convex Gorenstein cones [8] and of the duality for Gorenstein polytopes. [9] [10]

For any fixed natural number there exists only a finite number of -dimensional reflexive polytopes up to a -isomorphism. The number is known only for : , , , The combinatorial classification of -dimensional reflexive simplices up to a -isomorphism is closely related to the enumeration of all solutions of the diophantine equation . The classification of 4-dimensional reflexive polytopes up to a -isomorphism is important for constructing many topologically different 3-dimensional Calabi–Yau manifolds using hypersurfaces in 4-dimensional toric varieties which are Gorenstein Fano varieties. The complete list of 3-dimensional and 4-dimensional reflexive polytopes have been obtained by physicists Maximilian Kreuzer and Harald Skarke using a special software in Polymake. [11] [12] [13] [14]

A mathematical explanation of the combinatorial mirror symmetry has been obtained by Lev Borisov via vertex operator algebras which are algebraic counterparts of conformal field theories. [15]

See also

Related Research Articles

Dual polyhedron Polyhedron associated with another by swapping vertices for faces

In geometry, every polyhedron is associated with a second dual figure, where the vertices of one correspond to the faces of the other, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other. Such dual figures remain combinatorial or abstract polyhedra, but not all are also geometric polyhedra. Starting with any given polyhedron, the dual of its dual is the original polyhedron.

In elementary geometry, a polytope is a geometric object with flat sides (faces). It is a generalization in any number of dimensions of the three-dimensional polyhedron. Polytopes may exist in any general number of dimensions n as an n-dimensional polytope or n-polytope. In this context, "flat sides" means that the sides of a (k+1)-polytope consist of k-polytopes that may have (k−1)-polytopes in common. For example, a two-dimensional polygon is a 2-polytope and a three-dimensional polyhedron is a 3-polytope.

Complex geometry Study of complex manifolds and several complex variables

In mathematics, complex geometry is the study of geometric structures and constructions arising out of, or described by, the complex numbers. In particular, complex geometry is concerned with the study of spaces such as complex manifolds and complex algebraic varieties, functions of several complex variables, and holomorphic constructions such as holomorphic vector bundles and coherent sheaves. Application of transcendental methods to algebraic geometry falls in this category, together with more geometric aspects of complex analysis.

Calabi–Yau manifold Riemannian manifold with SU(n) holonomy

In algebraic geometry, a Calabi–Yau manifold, also known as a Calabi–Yau space, is a particular type of manifold which has properties, such as Ricci flatness, yielding applications in theoretical physics. Particularly in superstring theory, the extra dimensions of spacetime are sometimes conjectured to take the form of a 6-dimensional Calabi–Yau manifold, which led to the idea of mirror symmetry. Their name was coined by Candelas et al. (1985), after Eugenio Calabi who first conjectured that such surfaces might exist, and Shing-Tung Yau (1978) who proved the Calabi conjecture.

In theoretical physics, T-duality is an equivalence of two physical theories, which may be either quantum field theories or string theories. In the simplest example of this relationship, one of the theories describes strings propagating in a spacetime shaped like a circle of some radius , while the other theory describes strings propagating on a spacetime shaped like a circle of radius proportional to . The idea of T-duality was first noted by Bala Sathiapalan in an obscure paper in 1987. The two T-dual theories are equivalent in the sense that all observable quantities in one description are identified with quantities in the dual description. For example, momentum in one description takes discrete values and is equal to the number of times the string winds around the circle in the dual description.

In mathematics, a duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one fashion, often by means of an involution operation: if the dual of A is B, then the dual of B is A. Such involutions sometimes have fixed points, so that the dual of A is A itself. For example, Desargues' theorem is self-dual in this sense under the standard duality in projective geometry.

In algebraic geometry and theoretical physics, mirror symmetry is a relationship between geometric objects called Calabi–Yau manifolds. The term refers to a situation where two Calabi–Yau manifolds look very different geometrically but are nevertheless equivalent when employed as extra dimensions of string theory.

In algebraic geometry, a toric variety or torus embedding is an algebraic variety containing an algebraic torus as an open dense subset, such that the action of the torus on itself extends to the whole variety. Some authors also require it to be normal. Toric varieties form an important and rich class of examples in algebraic geometry, which often provide a testing ground for theorems. The geometry of a toric variety is fully determined by the combinatorics of its associated fan, which often makes computations far more tractable. For a certain special, but still quite general class of toric varieties, this information is also encoded in a polytope, which creates a powerful connection of the subject with convex geometry. Familiar examples of toric varieties are affine space, projective spaces, products of projective spaces and bundles over projective space.

Homological mirror symmetry is a mathematical conjecture made by Maxim Kontsevich. It seeks a systematic mathematical explanation for a phenomenon called mirror symmetry first observed by physicists studying string theory.

In mathematics, specifically in combinatorial commutative algebra, a convex lattice polytope P is called normal if it has the following property: given any positive integer n, every lattice point of the dilation nP, obtained from P by scaling its vertices by the factor n and taking the convex hull of the resulting points, can be written as the sum of exactly n lattice points in P. This property plays an important role in the theory of toric varieties, where it corresponds to projective normality of the toric variety determined by P. Normal polytopes have popularity in algebraic combinatorics. These polytopes also represent the homogeneous case of the Hilbert bases of finite positive rational cones and the connection to algebraic geometry is that they define projectively normal embeddings of toric varieties.

In algebraic combinatorics, the h-vector of a simplicial polytope is a fundamental invariant of the polytope which encodes the number of faces of different dimensions and allows one to express the Dehn–Sommerville equations in a particularly simple form. A characterization of the set of h-vectors of simplicial polytopes was conjectured by Peter McMullen and proved by Lou Billera and Carl W. Lee and Richard Stanley (g-theorem). The definition of h-vector applies to arbitrary abstract simplicial complexes. The g-conjecture stated that for simplicial spheres, all possible h-vectors occur already among the h-vectors of the boundaries of convex simplicial polytopes. It was proven in December 2018 by Karim Adiprasito.

The SYZ conjecture is an attempt to understand the mirror symmetry conjecture, an issue in theoretical physics and mathematics. The original conjecture was proposed in a paper by Strominger, Yau, and Zaslow, entitled "Mirror Symmetry is T-duality".

In mathematics, a quintic threefold is a 3-dimensional hypersurface of degree 5 in 4-dimensional projective space. Non-singular quintic threefolds are Calabi–Yau manifolds.

Integral polytope

In geometry and polyhedral combinatorics, an integral polytope is a convex polytope whose vertices all have integer Cartesian coordinates. That is, it is a polytope that equals the convex hull of its integer points. Integral polytopes are also called lattice polytopes or Z-polytopes. The special cases of two- and three-dimensional integral polytopes may be called polygons or polyhedra instead of polytopes, respectively.

In string theory and related theories such as supergravity theories, a brane is a physical object that generalizes the notion of a point particle to higher dimensions. Branes are dynamical objects which can propagate through spacetime according to the rules of quantum mechanics. They have mass and can have other attributes such as charge.

Victor Batyrev Russian mathematician

Victor Vadimovich Batyrev is a Russian mathematician, specializing in algebraic and arithmetic geometry and its applications to mathematical physics. He is a professor at the University of Tübingen.

Mark Gross (mathematician) American mathematician

Mark William Gross is an American mathematician, specializing in differential geometry, algebraic geometry, and mirror symmetry.

Consani–Scholten quintic

In the mathematical fields of algebraic geometry and arithmetic geometry, the Consani–Scholten quintic is an algebraic hypersurface studied in 2001 by Caterina Consani and Jasper Scholten. It has been used as a test case for the Langlands program.

In mathematics, mirror symmetry is a conjectural relationship between certain Calabi–Yau manifolds and a constructed "mirror manifold". The conjecture allows one to relate the number of rational curves on a Calabi-Yau manifold to integrals from a family of varieties. In short, this means there is a relation between the number of genus algebraic curves of degree on a Calabi-Yau variety and integrals on a dual variety . These relations were original discovered by Candelas, De la Ossa, Green, and Parkes in a paper studying a generic quintic threefold in as the variety and a construction from the quintic Dwork family giving . Shortly after, Sheldon Katz wrote a summary paper outlining part of their construction and conjectures what the rigorous mathematical interpretation could be.

References

  1. Batyrev, V. (1994). "Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties". J. Algebraic Geometry: 493–535.
  2. Nill, B. "Reflexive polytopes" (PDF).
  3. Batyrev, V.; van Straten, D. (1995). "Generalized hypergeometric functions and rational curves on Calabi–Yau complete intersections in toric varieties". Comm. Math. Phys. 168 (3): 493–533. arXiv: alg-geom/9307010 . Bibcode:1995CMaPh.168..493B. doi:10.1007/BF02101841. S2CID   16401756.
  4. Candelas, P.; de la Ossa, X.; Green, P.; Parkes, L. (1991). "A pair of Calabi–Yau manifolds as an exactly soluble superconformal field theory". Nuclear Physics B. 359 (1): 21–74. doi:10.1016/0550-3213(91)90292-6.
  5. I. Gelfand, M. Kapranov, S. Zelevinski (1989), "Hypergeometric functions and toric varieties", Funct. Anal. Appl. 23, no. 2, 94–10.
  6. A. Varchenko (1990), "Multidimensional hypergeometric functions in conformal field theory, algebraic K-theory, algebraic geometry", Proc. ICM-90, 281–300.
  7. L. Borisov (1994), "Towards the Mirror Symmetry for Calabi–Yau Complete intersections in Gorenstein Toric Fano Varieties", arXiv : alg-geom/9310001
  8. Batyrev, V.; Borisov, L. (1997). "Dual cones and mirror symmetry for generalized Calabi–Yau manifolds". Mirror Symmetry, II: 71–86.
  9. Batyrev, V.; Nill, B. (2008). "Combinatorial aspects of mirror symmetry". Contemporary Mathematics. 452: 35–66. doi:10.1090/conm/452/08770. ISBN   9780821841730. S2CID   6817890.
  10. Kreuzer, M. (2008). "Combinatorics and Mirror Symmetry: Results and Perspectives" (PDF).
  11. M. Kreuzer, H. Skarke (1997), "On the classification of reflexive polyhedra", Comm. Math. Phys., 185, 495–508
  12. M. Kreuzer, H. Skarke (1998) "Classification of reflexive polyhedra in three dimensions", Advances Theor. Math. Phys., 2, 847–864
  13. M. Kreuzer, H. Skarke (2002), "Complete classification of reflexive polyhedra in four dimensions", Advances Theor. Math. Phys., 4, 1209–1230
  14. M. Kreuzer, H. Skarke, Calabi–Yau data, http://hep.itp.tuwien.ac.at/~kreuzer/CY/
  15. L. Borisov (2001), "Vertex algebras and mirror symmetry", Comm. Math. Phys., 215, no. 3, 517–557.