Combined forced and natural convection

Last updated

In fluid thermodynamics, combined forced convection and natural convection, or mixed convection, occurs when natural convection and forced convection mechanisms act together to transfer heat. This is also defined as situations where both pressure forces and buoyant forces interact. [1] How much each form of convection contributes to the heat transfer is largely determined by the flow, temperature, geometry, and orientation. The nature of the fluid is also influential, since the Grashof number increases in a fluid as temperature increases, but is maximized at some point for a gas. [2]

Contents

Characterization

Mixed convection problems are characterized by the Grashof number (for the natural convection) and the Reynolds number (for the forced convection). The relative effect of buoyancy on mixed convection can be expressed through the Richardson number:

The respective length scales for each dimensionless number must be chosen depending on the problem, e.g. a vertical length for the Grashof number and a horizontal scale for the Reynolds number. Small Richardson numbers characterize a flow dominated by forced convection. Richardson numbers higher than indicate that the flow problem is pure natural convection and the influence of forced convection can be neglected. [3]

Like for natural convection, the nature of a mixed convection flow is highly dependent on heat transfer (as buoyancy is one of the driving mechanisms) and turbulence effects play a significant role. [4]

Cases

Because of the wide range of variables, hundreds of papers have been published for experiments involving various types of fluids and geometries. This variety makes a comprehensive correlation difficult to obtain, and when it is, it is usually for very limited cases. [2] Combined forced and natural convection, however, can be generally described in one of three ways.

Two-dimensional mixed convection with aiding flow

The first case is when natural convection aids forced convection. This is seen when the buoyant motion is in the same direction as the forced motion, thus accelerating the boundary layer and enhancing the heat transfer. [5] Transition to turbulence, however, can be delayed. [6] An example of this would be a fan blowing upward on a hot plate. Since heat naturally rises, the air being forced upward over the plate adds to the heat transfer.

Two-dimensional mixed convection with opposing flow

The second case is when natural convection acts in the opposite way of the forced convection. Consider a fan forcing air upward over a cold plate. [5] In this case, the buoyant force of the cold air naturally causes it to fall, but the air being forced upward opposes this natural motion. Depending on the Richardson number, the boundary layer at the cold plate exhibits a lower velocity than the free stream, or even accelerates in the opposite direction. This second mixed convection case therefore experiences strong shear in the boundary layer and quickly transitions into a turbulent flow state.

Three-dimensional mixed convection

The third case is referred to as three-dimensional mixed convection. This flow occurs when the buoyant motion acts perpendicular to the forced motion. An example of this case is a hot, vertical flate plate with a horizontal flow, e.g. the surface of a solar thermal central receiver. While the free stream continues its motion along the imposed direction, the boundary layer at the plate accelerates in the upward direction. In this flow case, buoyancy plays a major role in the laminar-turbulent transition, while the imposed velocity can suppress turbulence (laminarization) [4]

Calculation of total heat transfer

Simply adding or subtracting the heat transfer coefficients for forced and natural convection will yield inaccurate results for mixed convection. Also, as the influence of buoyancy on the heat transfer sometimes even exceeds the influence of the free stream, mixed convection should not be treated as pure forced convection. Consequently, problem-specific correlations are required. Experimental data has suggested that

can describe the area-averaged heat transfer. [7] For the case of a large, vertical surface in a horizontal flow provided a best fit depending on the details of how is fitted. [7]

Applications

Combined forced and natural convection is often seen in very-high-power-output devices where the forced convection is not enough to dissipate all of the heat necessary. At this point, combining natural convection with forced convection will often deliver the desired results. Examples of these processes are nuclear reactor technology and some aspects of electronic cooling. [2]

Related Research Articles

<span class="mw-page-title-main">Convection</span> Fluid flow that occurs due to heterogeneous fluid properties and body forces.

Convection is single or multiphase fluid flow that occurs spontaneously due to the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity. When the cause of the convection is unspecified, convection due to the effects of thermal expansion and buoyancy can be assumed. Convection may also take place in soft solids or mixtures where particles can flow.

The Prandtl number (Pr) or Prandtl group is a dimensionless number, named after the German physicist Ludwig Prandtl, defined as the ratio of momentum diffusivity to thermal diffusivity. The Prandtl number is given as:

In thermal fluid dynamics, the Nusselt number is the ratio of convective to conductive heat transfer at a boundary in a fluid. Convection includes both advection and diffusion (conduction). The conductive component is measured under the same conditions as the convective but for a hypothetically motionless fluid. It is a dimensionless number, closely related to the fluid's Rayleigh number.

In fluid mechanics, the Grashof number is a dimensionless number which approximates the ratio of the buoyancy to viscous forces acting on a fluid. It frequently arises in the study of situations involving natural convection and is analogous to the Reynolds number.

In fluid mechanics, the Rayleigh number (Ra, after Lord Rayleigh) for a fluid is a dimensionless number associated with buoyancy-driven flow, also known as free (or natural) convection. It characterises the fluid's flow regime: a value in a certain lower range denotes laminar flow; a value in a higher range, turbulent flow. Below a certain critical value, there is no fluid motion and heat transfer is by conduction rather than convection. For most engineering purposes, the Rayleigh number is large, somewhere around 106 to 108.

<span class="mw-page-title-main">Heat transfer</span> Transport of thermal energy in physical systems

Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy (heat) between physical systems. Heat transfer is classified into various mechanisms, such as thermal conduction, thermal convection, thermal radiation, and transfer of energy by phase changes. Engineers also consider the transfer of mass of differing chemical species, either cold or hot, to achieve heat transfer. While these mechanisms have distinct characteristics, they often occur simultaneously in the same system.

The Richardson number (Ri) is named after Lewis Fry Richardson (1881–1953). It is the dimensionless number that expresses the ratio of the buoyancy term to the flow shear term:

<span class="mw-page-title-main">Surface layer</span> Layer of a turbulent fluid affected by interaction with a surface

The surface layer is the layer of a turbulent fluid most affected by interaction with a solid surface or the surface separating a gas and a liquid where the characteristics of the turbulence depend on distance from the interface. Surface layers are characterized by large normal gradients of tangential velocity and large concentration gradients of any substances transported to or from the interface.

<span class="mw-page-title-main">Convective available potential energy</span> Measure of instability in the air as a buoyancy force

In meteorology, convective available potential energy, is the integrated amount of work that the upward (positive) buoyancy force would perform on a given mass of air if it rose vertically through the entire atmosphere. Positive CAPE will cause the air parcel to rise, while negative CAPE will cause the air parcel to sink. Nonzero CAPE is an indicator of atmospheric instability in any given atmospheric sounding, a necessary condition for the development of cumulus and cumulonimbus clouds with attendant severe weather hazards.

In thermodynamics, the heat transfer coefficient or film coefficient, or film effectiveness, is the proportionality constant between the heat flux and the thermodynamic driving force for the flow of heat. It is used in calculating the heat transfer, typically by convection or phase transition between a fluid and a solid. The heat transfer coefficient has SI units in watts per square meter per kelvin (W/m²K).

There are two different Bejan numbers (Be) used in the scientific domains of thermodynamics and fluid mechanics. Bejan numbers are named after Adrian Bejan.

In fluid dynamics, the Taylor number (Ta) is a dimensionless quantity that characterizes the importance of centrifugal "forces" or so-called inertial forces due to rotation of a fluid about an axis, relative to viscous forces.

In fluid dynamics, the Schmidt number of a fluid is a dimensionless number defined as the ratio of momentum diffusivity and mass diffusivity, and it is used to characterize fluid flows in which there are simultaneous momentum and mass diffusion convection processes. It was named after German engineer Ernst Heinrich Wilhelm Schmidt (1892–1975).

<span class="mw-page-title-main">Forced convection</span> Where fluid motion is generated by an external source

Forced convection is a mechanism, or type of transport, in which fluid motion is generated by an external source. Alongside natural convection, thermal radiation, and thermal conduction it is one of the methods of heat transfer and allows significant amounts of heat energy to be transported very efficiently.

The Stanton number, St, is a dimensionless number that measures the ratio of heat transferred into a fluid to the thermal capacity of fluid. The Stanton number is named after Thomas Stanton (engineer) (1865–1931). It is used to characterize heat transfer in forced convection flows.

<span class="mw-page-title-main">Convection (heat transfer)</span> Heat transfer due to combined effects of advection and diffusion

Convection is the transfer of heat from one place to another due to the movement of fluid. Although often discussed as a distinct method of heat transfer, convective heat transfer involves the combined processes of conduction and advection. Convection is usually the dominant form of heat transfer in liquids and gases.

In convective heat transfer, the Churchill–Bernstein equation is used to estimate the surface averaged Nusselt number for a cylinder in cross flow at various velocities. The need for the equation arises from the inability to solve the Navier–Stokes equations in the turbulent flow regime, even for a Newtonian fluid. When the concentration and temperature profiles are independent of one another, the mass-heat transfer analogy can be employed. In the mass-heat transfer analogy, heat transfer dimensionless quantities are replaced with analogous mass transfer dimensionless quantities.

In engineering, physics, and chemistry, the study of transport phenomena concerns the exchange of mass, energy, charge, momentum and angular momentum between observed and studied systems. While it draws from fields as diverse as continuum mechanics and thermodynamics, it places a heavy emphasis on the commonalities between the topics covered. Mass, momentum, and heat transport all share a very similar mathematical framework, and the parallels between them are exploited in the study of transport phenomena to draw deep mathematical connections that often provide very useful tools in the analysis of one field that are directly derived from the others.

<span class="mw-page-title-main">Rayleigh–Bénard convection</span> Type of heat transfer within fluids

In fluid thermodynamics, Rayleigh–Bénard convection is a type of natural convection, occurring in a planar horizontal layer of fluid heated from below, in which the fluid develops a regular pattern of convection cells known as Bénard cells. This phenomenon can also manifest where a species denser than the electrolyte is consumed from below and generated at the top. Bénard–Rayleigh convection is one of the most commonly studied convection phenomena because of its analytical and experimental accessibility. The convection patterns are the most carefully examined example of self-organizing nonlinear systems.

Open ocean convection is a process in which the mesoscale ocean circulation and large, strong winds mix layers of water at different depths. Fresher water lying over the saltier or warmer over the colder leads to the stratification of water, or its separation into layers. Strong winds cause evaporation, so the ocean surface cools, weakening the stratification. As a result, the surface waters are overturned and sink while the "warmer" waters rise to the surface, starting the process of convection. This process has a crucial role in the formation of both bottom and intermediate water and in the large-scale thermohaline circulation, which largely determines global climate. It is also an important phenomena that controls the intensity of the Atlantic Meridional Overturning Circulation (AMOC).

References

  1. Sun, Hua; Ru Li; Eric Chenier; Guy Lauriat (2012). "On the modeling of aiding mixed convection in vertical channels" (PDF). International Journal of Heat and Mass Transfer. 48 (7): 1125–1134. Bibcode:2012HMT....48.1125S. doi:10.1007/s00231-011-0964-8.
  2. 1 2 3 Joye, Donald D.; Joseph P. Bushinsky; Paul E. Saylor (1989). "Mixed Convection Heat Transfer at High Grashof Number in a Vertical Tube". Industrial and Engineering Chemistry Research. 28 (12): 1899–1903. doi:10.1021/ie00096a025.
  3. Sparrow, E.M.; Eichhorn, R.; Gregg, J.L. (1959). "Combined forced and free convection in a boundary layer flow". Physics of Fluids. 2 (3): 319–328. Bibcode:1959PhFl....2..319S. doi:10.1063/1.1705928.
  4. 1 2 Garbrecht, Oliver (August 23, 2017). "Large eddy simulation of three-dimensional mixed convection on a vertical plate" (PDF). RWTH Aachen University.
  5. 1 2 Cengal, Yunus A.; Afshin J. Ghajar (2007). Heat and Mass Transfer (4 ed.). McGraw-Hill. pp. 548–549. ISBN   978-0-07-339812-9.
  6. Abedin, M.Z.; Tsuji, T.; Lee, J. (2012). "Effects of freestream on the characteristics of thermally-driven boundary layers along a heated vertical flat plate". International Journal of Heat and Fluid Flow. 36: 92–100. doi:10.1016/j.ijheatfluidflow.2012.03.003.
  7. 1 2 Siebers, D.L. (1983). Experimental mixed convection heat transfer from a large, vertical surface in a horizontal flow. Ph.D. thesis, Stanford University. pp. 96–101.