Complement (group theory)

Last updated

In mathematics, especially in the area of algebra known as group theory, a complement of a subgroup H in a group G is a subgroup K of G such that

Contents

Equivalently, every element of G has a unique expression as a product hk where hH and kK. This relation is symmetrical: if K is a complement of H, then H is a complement of K. Neither H nor K need be a normal subgroup of G.

Properties

Relation to other products

Complements generalize both the direct product (where the subgroups H and K are normal in G), and the semidirect product (where one of H or K is normal in G). The product corresponding to a general complement is called the internal Zappa–Szép product. When H and K are nontrivial, complement subgroups factor a group into smaller pieces.

Existence

As previously mentioned, complements need not exist.

A p-complement is a complement to a Sylow p-subgroup. Theorems of Frobenius and Thompson describe when a group has a normal p-complement. Philip Hall characterized finite soluble groups amongst finite groups as those with p-complements for every prime p; these p-complements are used to form what is called a Sylow system.

A Frobenius complement is a special type of complement in a Frobenius group.

A complemented group is one where every subgroup has a complement.

See also

Related Research Articles

<span class="mw-page-title-main">Abelian group</span> Commutative group (mathematics)

In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after early 19th century mathematician Niels Henrik Abel.

<span class="texhtml mvar" style="font-style:italic;">p</span>-group Group in which the order of every element is a power of p

In mathematics, specifically group theory, given a prime number p, a p-group is a group in which the order of every element is a power of p. That is, for each element g of a p-group G, there exists a nonnegative integer n such that the product of pn copies of g, and not fewer, is equal to the identity element. The orders of different elements may be different powers of p.

In mathematics, one can define a product of group subsets in a natural way. If S and T are subsets of a group G, then their product is the subset of G defined by

<span class="mw-page-title-main">Symmetric group</span> Type of group in abstract algebra

In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group defined over a finite set of symbols consists of the permutations that can be performed on the symbols. Since there are such permutation operations, the order of the symmetric group is .

<span class="mw-page-title-main">Sylow theorems</span> Theorems that help decompose a finite group based on prime factors of its order

In mathematics, specifically in the field of finite group theory, the Sylow theorems are a collection of theorems named after the Norwegian mathematician Peter Ludwig Sylow that give detailed information about the number of subgroups of fixed order that a given finite group contains. The Sylow theorems form a fundamental part of finite group theory and have very important applications in the classification of finite simple groups.

<span class="mw-page-title-main">Nilpotent group</span> Group that has an upper central series terminating with G

In mathematics, specifically group theory, a nilpotent groupG is a group that has an upper central series that terminates with G. Equivalently, its central series is of finite length or its lower central series terminates with {1}.

<span class="mw-page-title-main">Finite group</span> Mathematical group based upon a finite number of elements

In abstract algebra, a finite group is a group whose underlying set is finite. Finite groups often arise when considering symmetry of mathematical or physical objects, when those objects admit just a finite number of structure-preserving transformations. Important examples of finite groups include cyclic groups and permutation groups.

<span class="mw-page-title-main">Ferdinand Georg Frobenius</span> German mathematician

Ferdinand Georg Frobenius was a German mathematician, best known for his contributions to the theory of elliptic functions, differential equations, number theory, and to group theory. He is known for the famous determinantal identities, known as Frobenius–Stickelberger formulae, governing elliptic functions, and for developing the theory of biquadratic forms. He was also the first to introduce the notion of rational approximations of functions, and gave the first full proof for the Cayley–Hamilton theorem. He also lent his name to certain differential-geometric objects in modern mathematical physics, known as Frobenius manifolds.

In mathematics, more specifically in group theory, the character of a group representation is a function on the group that associates to each group element the trace of the corresponding matrix. The character carries the essential information about the representation in a more condensed form. Georg Frobenius initially developed representation theory of finite groups entirely based on the characters, and without any explicit matrix realization of representations themselves. This is possible because a complex representation of a finite group is determined by its character. The situation with representations over a field of positive characteristic, so-called "modular representations", is more delicate, but Richard Brauer developed a powerful theory of characters in this case as well. Many deep theorems on the structure of finite groups use characters of modular representations.

In mathematics, the Feit–Thompson theorem, or odd order theorem, states that every finite group of odd order is solvable. It was proved by Walter Feit and John Griggs Thompson.

<span class="mw-page-title-main">Frobenius group</span>

In mathematics, a Frobenius group is a transitive permutation group on a finite set, such that no non-trivial element fixes more than one point and some non-trivial element fixes a point. They are named after F. G. Frobenius.

<span class="mw-page-title-main">Hall subgroup</span>

In mathematics, specifically group theory, a Hall subgroup of a finite group G is a subgroup whose order is coprime to its index. They were introduced by the group theorist Philip Hall (1928).

In mathematics, in the field of group theory, a locally finite group is a type of group that can be studied in ways analogous to a finite group. Sylow subgroups, Carter subgroups, and abelian subgroups of locally finite groups have been studied. The concept is credited to work in the 1930s by Russian mathematician Sergei Chernikov.

In mathematics, in the realm of group theory, the term complemented group is used in two distinct, but similar ways.

In mathematics, especially group theory, the Zappa–Szép product describes a way in which a group can be constructed from two subgroups. It is a generalization of the direct and semidirect products. It is named after Guido Zappa (1940) and Jenő Szép (1950) although it was independently studied by others including B.H. Neumann (1935), G.A. Miller (1935), and J.A. de Séguier (1904).

In mathematics, a separable algebra is a kind of semisimple algebra. It is a generalization to associative algebras of the notion of a separable field extension.

In mathematics, especially in the area of algebra known as group theory, the term Z-group refers to a number of distinct types of groups:

In mathematical group theory, a normal p-complement of a finite group for a prime p is a normal subgroup of order coprime to p and index a power of p. In other words the group is a semidirect product of the normal p-complement and any Sylow p-subgroup. A group is called p-nilpotent if it has a normal p-complement.

In abstract algebra, the focal subgroup theorem describes the fusion of elements in a Sylow subgroup of a finite group. The focal subgroup theorem was introduced in and is the "first major application of the transfer" according to. The focal subgroup theorem relates the ideas of transfer and fusion such as described in. Various applications of these ideas include local criteria for p-nilpotence and various non-simplicity criteria focussing on showing that a finite group has a normal subgroup of index p.

References