Complemented group

Last updated

In mathematics, in the realm of group theory, the term complemented group is used in two distinct, but similar ways.

In ( Hall 1937 ), a complemented group is one in which every subgroup has a group-theoretic complement. Such groups are called completely factorizable groups in the Russian literature, following ( Baeva 1953 ) and ( Černikov 1953 ).

The following are equivalent for any finite group G:

Later, in ( Zacher 1953 ), a group is said to be complemented if the lattice of subgroups is a complemented lattice, that is, if for every subgroup H there is a subgroup K such that HK = 1 and ⟨H, K⟩ is the whole group. Hall's definition required in addition that H and K permute, that is, that HK = {hk : h in H, k in K} form a subgroup. Such groups are also called K-groups in the Italian and lattice theoretic literature, such as ( Schmidt 1994 , pp. 114–121, Chapter 3.1). The Frattini subgroup of a K-group is trivial; if a group has a core-free maximal subgroup that is a K-group, then it itself is a K-group; hence subgroups of K-groups need not be K-groups, but quotient groups and direct products of K-groups are K-groups, ( Schmidt 1994 , pp. 115–116). In ( Costantini & Zacher 2004 ) it is shown that every finite simple group is a complemented group. Note that in the classification of finite simple groups, K-group is more used to mean a group whose proper subgroups only have composition factors amongst the known finite simple groups.

An example of a group that is not complemented (in either sense) is the cyclic group of order p2, where p is a prime number. This group only has one nontrivial subgroup H, the cyclic group of order p, so there can be no other subgroup L to be the complement of H.

Related Research Articles

Cyclic group Mathematical group that can be generated as the set of powers of a single element

In group theory, a branch of abstract algebra, a cyclic group or monogenous group is a group that is generated by a single element. That is, it is a set of invertible elements with a single associative binary operation, and it contains an element g such that every other element of the group may be obtained by repeatedly applying the group operation to g or its inverse. Each element can be written as a power of g in multiplicative notation, or as a multiple of g in additive notation. This element g is called a generator of the group.

Sylow theorems Theorems that help decompose a finite group based on prime factors of its order

In mathematics, specifically in the field of finite group theory, the Sylow theorems are a collection of theorems named after the Norwegian mathematician Peter Ludwig Sylow that give detailed information about the number of subgroups of fixed order that a given finite group contains. The Sylow theorems form a fundamental part of finite group theory and have very important applications in the classification of finite simple groups.

In the area of modern algebra known as group theory, a Tarski monster group, named for Alfred Tarski, is an infinite group G, such that every proper subgroup H of G, other than the identity subgroup, is a cyclic group of order a fixed prime number p. A Tarski monster group is necessarily simple. It was shown by Alexander Yu. Olshanskii in 1979 that Tarski groups exist, and that there is a Tarski p-group for every prime p > 1075. They are a source of counterexamples to conjectures in group theory, most importantly to Burnside's problem and the von Neumann conjecture.

Frobenius group

In mathematics, a Frobenius group is a transitive permutation group on a finite set, such that no non-trivial element fixes more than one point and some non-trivial element fixes a point. They are named after F. G. Frobenius.

Hall subgroup

In mathematics, a Hall subgroup of a finite group G is a subgroup whose order is coprime to its index. They were introduced by the group theorist Philip Hall (1928).

In mathematics, in the field of group theory, a quasinormal subgroup, or permutable subgroup, is a subgroup of a group that commutes (permutes) with every other subgroup with respect to the product of subgroups. The term quasinormal subgroup was introduced by Øystein Ore in 1937.

In algebraic group theory, approximation theorems are an extension of the Chinese remainder theorem to algebraic groups G over global fields k.

Lattice of subgroups

In mathematics, the lattice of subgroups of a group is the lattice whose elements are the subgroups of , with the partial order relation being set inclusion. In this lattice, the join of two subgroups is the subgroup generated by their union, and the meet of two subgroups is their intersection.

In mathematics, a polycyclic group is a solvable group that satisfies the maximal condition on subgroups. Polycyclic groups are finitely presented, which makes them interesting from a computational point of view.

In mathematics, in the area of abstract algebra known as group theory, an A-group is a type of group that is similar to abelian groups. The groups were first studied in the 1940s by Philip Hall, and are still studied today. A great deal is known about their structure.

In mathematics, a group is supersolvable if it has an invariant normal series where all the factors are cyclic groups. Supersolvability is stronger than the notion of solvability.

Abraham Zelmanov, was a prominent scientist working in the General Theory of Relativity and cosmology. He first constructed, in 1944, the complete mathematical method to calculate physical observable quantities in the General Theory of Relativity. Applying the mathematical apparatus, in the 1940s, he established the basics of the theory of inhomogeneous anisotropic universe, where he determined specific kinds of all cosmological models — scenarios of evolution — which could be theoretically conceivable for a truly inhomogeneous and anisotropic Universe in the framework of Einstein's theory.

In representation theory, a branch of mathematics, the Gelfand–Graev representation is a representation of a reductive group over a finite field introduced by Gelfand & Graev (1962), induced from a non-degenerate character of a Sylow subgroup.

In the mathematical subject of group theory, the rank of a groupG, denoted rank(G), can refer to the smallest cardinality of a generating set for G, that is

In mathematics, a quantum affine algebra is a Hopf algebra that is a q-deformation of the universal enveloping algebra of an affine Lie algebra. They were introduced independently by Drinfeld (1985) and Jimbo (1985) as a special case of their general construction of a quantum group from a Cartan matrix. One of their principal applications has been to the theory of solvable lattice models in quantum statistical mechanics, where the Yang–Baxter equation occurs with a spectral parameter. Combinatorial aspects of the representation theory of quantum affine algebras can be described simply using crystal bases, which correspond to the degenerate case when the deformation parameter q vanishes and the Hamiltonian of the associated lattice model can be explicitly diagonalized.

In arithmetic geometry, the Tate–Shafarevich groupШ(A/K) of an abelian variety A (or more generally a group scheme) defined over a number field K consists of the elements of the Weil–Châtelet group WC(A/K) = H1(GK, A) that become trivial in all of the completions of K (i.e. the p-adic fields obtained from K, as well as its real and complex completions). Thus, in terms of Galois cohomology, it can be written as

In mathematics, the Kneser–Tits problem, introduced by Tits (1964) based on a suggestion by Martin Kneser, asks whether the Whitehead group W(G,K) of a semisimple simply connected isotropic algebraic group G over a field K is trivial. The Whitehead group is the quotient of the rational points of G by the normal subgroup generated by K-subgroups isomorphic to the additive group.

In mathematics, Coxeter matroids are generalization of matroids depending on a choice of a Coxeter group W and a parabolic subgroup P. Ordinary matroids correspond to the case when P is a maximal parabolic subgroup of a symmetric group W. They were introduced by Gelfand and Serganova, who named them after H. S. M. Coxeter.

Sergei Nikolaevich Chernikov

Sergei Nikolaevich Chernikov was a Russian mathematician who contributed significantly to the development of infinite group theory and linear inequalities.

In the mathematical subject of group theory, the Adian–Rabin theorem is a result which states that most "reasonable" properties of finitely presentable groups are algorithmically undecidable. The theorem is due to Sergei Adian (1955) and, independently, Michael O. Rabin (1958).

References