Complex analytic variety

Last updated

In mathematics, and in particular differential geometry and complex geometry, a complex analytic variety [note 1] or complex analytic space is a generalization of a complex manifold that allows the presence of singularities. Complex analytic varieties are locally ringed spaces that are locally isomorphic to local model spaces, where a local model space is an open subset of the vanishing locus of a finite set of holomorphic functions.

Contents

Definition

Denote the constant sheaf on a topological space with value by . A -space is a locally ringed space , whose structure sheaf is an algebra over .

Choose an open subset of some complex affine space , and fix finitely many holomorphic functions in . Let be the common vanishing locus of these holomorphic functions, that is, . Define a sheaf of rings on by letting be the restriction to of , where is the sheaf of holomorphic functions on . Then the locally ringed -space is a local model space.

A complex analytic variety is a locally ringed -space that is locally isomorphic to a local model space.

Morphisms of complex analytic varieties are defined to be morphisms of the underlying locally ringed spaces, they are also called holomorphic maps. A structure sheaf may have nilpotent element, [1] and also, when the complex analytic space whose structure sheaf is reduced, then the complex analytic space is reduced, that is, the complex analytic space may not be reduced.

An associated complex analytic space (variety) is such that; [1]

Let X be schemes finite type over , and cover X with open affine subset () (Spectrum of a ring). Then each is an algebra of finite type over , and . Where are polynomial in , which can be regarded as a holomorphic function on . Therefore, their common zero of the set is the complex analytic subspace . Here, scheme X obtained by glueing the data of the set , and then the same data can be used to glueing the complex analytic space into an complex analytic space , so we call a associated complex analytic space with X. The complex analytic space X is reduced if and only if the associated complex analytic space reduced. [2]

See also

Note

  1. 1 2 Hartshorne 1977, p. 439.
  2. Grothendieck & Raynaud (2002) (SGA 1 §XII. Proposition 2.1.)

Annotation

  1. Complex analytic variety (or just variety) is sometimes required to be irreducible and (or) reduced

Related Research Articles

In mathematics, complex geometry is the study of geometric structures and constructions arising out of, or described by, the complex numbers. In particular, complex geometry is concerned with the study of spaces such as complex manifolds and complex algebraic varieties, functions of several complex variables, and holomorphic constructions such as holomorphic vector bundles and coherent sheaves. Application of transcendental methods to algebraic geometry falls in this category, together with more geometric aspects of complex analysis.

In mathematics, a sheaf is a tool for systematically tracking data attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data are well behaved in that they can be restricted to smaller open sets, and also the data assigned to an open set are equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set.

The Riemann–Roch theorem is an important theorem in mathematics, specifically in complex analysis and algebraic geometry, for the computation of the dimension of the space of meromorphic functions with prescribed zeros and allowed poles. It relates the complex analysis of a connected compact Riemann surface with the surface's purely topological genus g, in a way that can be carried over into purely algebraic settings.

In mathematics, a ringed space is a family of (commutative) rings parametrized by open subsets of a topological space together with ring homomorphisms that play roles of restrictions. Precisely, it is a topological space equipped with a sheaf of rings called a structure sheaf. It is an abstraction of the concept of the rings of continuous (scalar-valued) functions on open subsets.

<span class="mw-page-title-main">Projective variety</span>

In algebraic geometry, a projective variety over an algebraically closed field k is a subset of some projective n-space over k that is the zero-locus of some finite family of homogeneous polynomials of n + 1 variables with coefficients in k, that generate a prime ideal, the defining ideal of the variety. Equivalently, an algebraic variety is projective if it can be embedded as a Zariski closed subvariety of .

In mathematics, the notion of a germ of an object in/on a topological space is an equivalence class of that object and others of the same kind that captures their shared local properties. In particular, the objects in question are mostly functions and subsets. In specific implementations of this idea, the functions or subsets in question will have some property, such as being analytic or smooth, but in general this is not needed ; it is however necessary that the space on/in which the object is defined is a topological space, in order that the word local has some meaning.

The theory of functions of several complex variables is the branch of mathematics dealing with functions defined on the complex coordinate space, that is, n-tuples of complex numbers. The name of the field dealing with the properties of these functions is called several complex variables, which the Mathematics Subject Classification has as a top-level heading.

In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information.

In algebraic geometry, a proper morphism between schemes is an analog of a proper map between complex analytic spaces.

In mathematics, algebraic geometry and analytic geometry are two closely related subjects. While algebraic geometry studies algebraic varieties, analytic geometry deals with complex manifolds and the more general analytic spaces defined locally by the vanishing of analytic functions of several complex variables. The deep relation between these subjects has numerous applications in which algebraic techniques are applied to analytic spaces and analytic techniques to algebraic varieties.

<span class="mw-page-title-main">K3 surface</span> Type of smooth complex surface of kodaira dimension 0

In mathematics, a complex analytic K3 surface is a compact connected complex manifold of dimension 2 with а trivial canonical bundle and irregularity zero. An (algebraic) K3 surface over any field means a smooth proper geometrically connected algebraic surface that satisfies the same conditions. In the Enriques–Kodaira classification of surfaces, K3 surfaces form one of the four classes of minimal surfaces of Kodaira dimension zero. A simple example is the Fermat quartic surface

In mathematics, the Borel–Weil–Bott theorem is a basic result in the representation theory of Lie groups, showing how a family of representations can be obtained from holomorphic sections of certain complex vector bundles, and, more generally, from higher sheaf cohomology groups associated to such bundles. It is built on the earlier Borel–Weil theorem of Armand Borel and André Weil, dealing just with the space of sections, the extension to higher cohomology groups being provided by Raoul Bott. One can equivalently, through Serre's GAGA, view this as a result in complex algebraic geometry in the Zariski topology.

In mathematics, in the theory of several complex variables and complex manifolds, a Stein manifold is a complex submanifold of the vector space of n complex dimensions. They were introduced by and named after Karl Stein. A Stein space is similar to a Stein manifold but is allowed to have singularities. Stein spaces are the analogues of affine varieties or affine schemes in algebraic geometry.

In mathematics, hyperfunctions are generalizations of functions, as a 'jump' from one holomorphic function to another at a boundary, and can be thought of informally as distributions of infinite order. Hyperfunctions were introduced by Mikio Sato in 1958 in Japanese,, building upon earlier work by Laurent Schwartz, Grothendieck and others.

In mathematics, a holomorphic vector bundle is a complex vector bundle over a complex manifold X such that the total space E is a complex manifold and the projection map π : EX is holomorphic. Fundamental examples are the holomorphic tangent bundle of a complex manifold, and its dual, the holomorphic cotangent bundle. A holomorphic line bundle is a rank one holomorphic vector bundle.

Affine geometry, broadly speaking, is the study of the geometrical properties of lines, planes, and their higher dimensional analogs, in which a notion of "parallel" is retained, but no metrical notions of distance or angle are. Affine spaces differ from linear spaces in that they do not have a distinguished choice of origin. So, in the words of Marcel Berger, "An affine space is nothing more than a vector space whose origin we try to forget about, by adding translations to the linear maps." Accordingly, a complex affine space, that is an affine space over the complex numbers, is like a complex vector space, but without a distinguished point to serve as the origin.

In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaf cohomology is a technique for producing functions with specified properties. Many geometric questions can be formulated as questions about the existence of sections of line bundles or of more general coherent sheaves; such sections can be viewed as generalized functions. Cohomology provides computable tools for producing sections, or explaining why they do not exist. It also provides invariants to distinguish one algebraic variety from another.

In mathematics, the Oka coherence theorem, proved by Kiyoshi Oka, states that the sheaf of germs of holomorphic functions on over a complex manifold is coherent.

In mathematics, the Andreotti–Grauert theorem, introduced by Andreotti and Grauert, gives conditions for cohomology groups of coherent sheaves over complex manifolds to vanish or to be finite-dimensional.

This is a glossary of algebraic geometry.

References

Future reading