Compton Tucker | |
---|---|
Education | BS., Biology MS., Systems Ecology, Natural Resource Ecology Laboratory PhD., Systems Ecology, Natural Resource Ecology Laboratory |
Alma mater | Colorado State University |
Occupation(s) | Earth scientist and academic |
Scientific career | |
Institutions | NASA Goddard Space Flight Center |
Compton Tucker is an Earth scientist and academic. He is a Senior Earth Scientist in the Laboratory for Hydrospheric and Biospheric Sciences at NASA Goddard Space Flight Center in the Earth Science Division in Greenbelt, Maryland, USA. [1]
Tucker is most known for his work on satellite-based time-series monitoring of vegetation for global studies including photosynthesis, land cover, droughts, food security, weather-linked disease outbreaks, forest conditions, deforestation, land degradation, and carbon in semi-arid trees. [2]
Tucker earned a B.S. in Biology in 1969 from Colorado State University. He later received an M.S. in 1973 and a Ph.D. in 1975, both in Systems Ecology, from the Natural Resource Ecology Laboratory in the Department of Forestry at Colorado State University. [3]
Tucker began his professional career as a National Academy of Sciences Postdoctoral Fellow at the NASA Goddard Space Flight Center from 1975 to 1977, subsequently holding the position of Physical Scientist at the Hydrospheric and Biospheric Sciences Laboratory from 1977 to 1992, when he was appointed a Senior Scientist. From 2005 to 2010, he was the NASA representative to the U.S. Global Change Research Program. Concurrently, he worked in NASA's Space Archaeology Program from 2001 to 2012, conducting ground-penetrating radar and ground magnetic surveys at Troy, in the Granicus River Valley, and at Gordion, all in Turkey. [4] Since 2012, he focused on his satellite mapping work and in 2014, he became involved in NASA's Commercial Satellite Data activities, quantifying semi-arid woody biomass at the tree level. [1]
Tucker has testified twice: in 1994, before the House Committee on Foreign Affairs's Subcommittee on the Western Hemisphere regarding Indigenous peoples and the Amazon Basin of Brazil; and in 2009 to the House Appropriations Subcommittee for Commerce, Justice, and Science concerning satellite observations needed to understand the role of land vegetation in weather and climate. [5] He has appeared on TV channels including PBS , BBC , CBS Canada, Bay News 9 , and TV1 in Sweden as well as radio channels including National Public Radio , Aspen Public Radio , Australian Radio National “Breakfast”, [6] including coverage for NASA's Dinosaur-Mammal Cretaceous Rosetta Stone [7] [8] and online programs like the Kennedy Center's "Reach to Forests" in 2024. [9]
Tucker is an adjunct professor at the University of Maryland and is a Consulting Scholar at the University Museum of the University of Pennsylvania. [10]
Tucker's M.S. and Ph.D. work involved the collection and analysis of grassland hyperspectral and supporting biological data from the Pawnee Intensive Site of the Grassland Biome under Lee D. Miller. The hyperspectral studies allowed a quantitative method to select spectral regions to study vegetation and also led to a hand-held 2-band radiometer. [11]
Tucker put his hyperspectral band selection to work, collaborating with Stan Schneider of NOAA in 1976 to restrict the Advanced Very-High Resolution Radiometer's (AVHRR) first band to the 550 nm to 700 nm bandwidth, from its previous wavelength range of 550 nm to 1000 nm. The 550 to 700 nm band with the instruments’ near-infrared band enabled producing AVHRR NDVI data from the NOAA series of meteorological satellites, starting with NOAA-6 in 1978 and continuing to NOAA-19, and additionally with MetOps-1, -2, & -3. [12] [13] He also utilized the hyperspectral data for band selection for the Thematic Mapper instruments for Landsat-4 and -5, consolidating two redundant near-infrared bands into one near-infrared band that enabled adding a second shortwave infrared band to the same instruments. [14]
The hand-held red and near-infrared radiometer was used by Tucker and colleagues at NASA collecting field data in 1978 that showed the time integral of NDVI was directly related to gross primary production. He then used 1 km NOAA Advanced Very High-Resolution Radiometer (AVHRR) 1981 imagery from Senegal to show NOAA-7 satellite-NDVI was also directly related to gross primary production from grass-dominated savannas. He began processing daily 4 km AVHRR imagery from Africa at the same time as these data were inexpensive and could be formed into composites to minimize clouds for $20/day. This work then expanded to the Earth's land area. [15]
Tucker contributed to the field of Earth science by using NOAA AVHRR NDVI satellite data and Landsat data to study global photosynthesis, vegetation phenology, land cover, famine early warning, drought monitoring, ecologically coupled disease outbreaks, forest condition, deforestation, land & forest degradation, and glacier extent. [2]
In his most highly cited work, Tucker employed the in situ hyperspectral data to demonstrate the effectiveness of infrared and red linear combinations for monitoring photosynthetically active biomass in plant canopies. [16] In 1985, he collaborated with John Townshend utilizing NOAA's AVHRR data to monitor African land cover revealing correlations with rainfall and enabling land cover classification and primary production estimates. [17] The following year, with I.Y. Fung, C.D. Keeling, and R.H. Gammon, he showed that satellite-derived estimates of radiation absorbed by vegetation correlated with surface CO2 concentrations, suggesting their utility in estimating global terrestrial photosynthesis. [18]
Tucker's research broadened to continental and global studies since 1986, and he worked with Ranga Myneni, Rama Nemani, Steven Running, Inez Fung, Jorge Pinzon, Piers Sellers, Joseph Berry, David Randall, Seitse Los, Wolfgang Bauermann and Assaf Anyamba. [19] [20] [21] [22] Since 2018, he has worked with Martin Brandt, Ankit Kariyaa, and Pierre Hiernaux on mapping individual trees, culminating in a paper that analyzed over 9.9 billion trees in semi-arid sub-Saharan Africa, determining the carbon content of every tree using satellite imagery and field allometry, and provided a database useful for carbon accounting, ecological protection, and dryland ecosystem restoration efforts. [23]
Satellite temperature measurements are inferences of the temperature of the atmosphere at various altitudes as well as sea and land surface temperatures obtained from radiometric measurements by satellites. These measurements can be used to locate weather fronts, monitor the El Niño-Southern Oscillation, determine the strength of tropical cyclones, study urban heat islands and monitor the global climate. Wildfires, volcanos, and industrial hot spots can also be found via thermal imaging from weather satellites.
Remote sensing is the acquisition of information about an object or phenomenon without making physical contact with the object, in contrast to in situ or on-site observation. The term is applied especially to acquiring information about Earth and other planets. Remote sensing is used in numerous fields, including geophysics, geography, land surveying and most Earth science disciplines. It also has military, intelligence, commercial, economic, planning, and humanitarian applications, among others.
The multi-angle imaging spectroradiometer (MISR) is a scientific instrument on the Terra satellite launched by NASA on 18 December 1999. This device is designed to measure the intensity of solar radiation reflected by the Earth system in various directions and spectral bands; it became operational in February 2000. Data generated by this sensor have been proven useful in a variety of applications including atmospheric sciences, climatology and monitoring terrestrial processes.
The normalized difference vegetation index (NDVI) is a widely-used metric for quantifying the health and density of vegetation using sensor data. It is calculated from spectrometric data at two specific bands: red and near-infrared. The spectrometric data is usually sourced from remote sensors, such as satellites.
The Advanced Very-High-Resolution Radiometer (AVHRR) instrument is a space-borne sensor that measures the reflectance of the Earth in five spectral bands that are relatively wide by today's standards. AVHRR instruments are or have been carried by the National Oceanic and Atmospheric Administration (NOAA) family of polar orbiting platforms (POES) and European MetOp satellites. The instrument scans several channels; two are centered on the red (0.6 micrometres) and near-infrared (0.9 micrometres) regions, a third one is located around 3.5 micrometres, and another two the thermal radiation emitted by the planet, around 11 and 12 micrometres.
NOAA-19, known as NOAA-N' before launch, is the last of the American National Oceanic and Atmospheric Administration (NOAA) series of weather satellites. NOAA-19 was launched on 6 February 2009. NOAA-19 is in an afternoon Sun-synchronous orbit and is intended to replace NOAA-18 as the prime afternoon spacecraft.
The enhanced vegetation index (EVI) is an 'optimized' vegetation index designed to enhance the vegetation signal with improved sensitivity in high biomass regions and improved vegetation monitoring through a de-coupling of the canopy background signal and a reduction in atmosphere influences. EVI is computed following this equation:
Ocean color is the branch of ocean optics that specifically studies the color of the water and information that can be gained from looking at variations in color. The color of the ocean, while mainly blue, actually varies from blue to green or even yellow, brown or red in some cases. This field of study developed alongside water remote sensing, so it is focused mainly on how color is measured by instruments.
NOAA-17, also known as NOAA-M before launch, was an operational, polar orbiting, weather satellite series operated by the National Environmental Satellite Service (NESS) of the National Oceanic and Atmospheric Administration (NOAA). NOAA-17 also continued the series of Advanced TIROS-N (ATN) spacecraft begun with the launch of NOAA-8 (NOAA-E) in 1983 but with additional new and improved instrumentation over the NOAA A-L series and a new launch vehicle.
NOAA-18, also known as NOAA-N before launch, is an operational, polar orbiting, weather satellite series operated by the National Environmental Satellite Service (NESS) of the National Oceanic and Atmospheric Administration (NOAA). NOAA-18 also continued the series of Advanced TIROS-N (ATN) spacecraft begun with the launch of NOAA-8 (NOAA-E) in 1983 but with additional new and improved instrumentation over the NOAA A-M series and a new launch vehicle. NOAA-18 is in an afternoon equator-crossing orbit and replaced NOAA-17 as the prime afternoon spacecraft.
NOAA-7, known as NOAA-C before launch, was an American operational weather satellite for use in the National Operational Environmental Satellite System (NOESS) and for the support of the Global Atmospheric Research Program (GARP) during 1978-1984. The satellite design provided an economical and stable Sun-synchronous platform for advanced operational instruments to measure the atmosphere of Earth, its surface and cloud cover, and the near-space environment. An earlier launch, NOAA-B, was scheduled to become NOAA-7, however NOAA-B failed to reach its required orbit.
Multispectral remote sensing is the collection and analysis of reflected, emitted, or back-scattered energy from an object or an area of interest in multiple bands of regions of the electromagnetic spectrum. Subcategories of multispectral remote sensing include hyperspectral, in which hundreds of bands are collected and analyzed, and ultraspectral remote sensing where many hundreds of bands are used. The main purpose of multispectral imaging is the potential to classify the image using multispectral classification. This is a much faster method of image analysis than is possible by human interpretation.
NOAA-6, known as NOAA-A before launch, was an American operational weather satellite for use in the National Operational Environmental Satellite System (NOESS) and for the support of the Global Atmospheric Research Program (GARP) during 1978–1984. The satellite design provided an economical and stable Sun-synchronous platform for advanced operational instruments to measure the atmosphere of Earth, its surface and cloud cover, and the near-space environment.
The Visible Infrared Imaging Radiometer Suite (VIIRS) is a sensor designed and manufactured by the Raytheon Company on board the polar-orbiting Suomi National Polar-orbiting Partnership, NOAA-20, and NOAA-21 weather satellites. VIIRS is one of five key instruments onboard Suomi NPP, launched on October 28, 2011. VIIRS is a whiskbroom scanner radiometer that collects imagery and radiometric measurements of the land, atmosphere, cryosphere, and oceans in the visible and infrared bands of the electromagnetic spectrum.
A vegetation index (VI) is a spectral imaging transformation of two or more image bands designed to enhance the contribution of vegetation properties and allow reliable spatial and temporal inter-comparisons of terrestrial photosynthetic activity and canopy structural variations.
NOAA-21, designated JPSS-2 prior to launch, is the second satellite in National Oceanic and Atmospheric Administration (NOAA)'s latest series of U.S. polar-orbiting, non-geosynchronous, environmental satellites, known as the Joint Polar Satellite System (JPSS). Launched on November 10, 2022, along with LOFTID, NOAA-21 now operates in the same orbit as NOAA-20 and Suomi NPP. It travels in a polar orbit, crossing the equator approximately 14 times a daily, and provides complete global coverage twice a day.
NOAA-20, designated JPSS-1 prior to launch, is the first of the United States National Oceanic and Atmospheric Administration's latest generation of U.S. polar-orbiting, non-geosynchronous, environmental satellites called the Joint Polar Satellite System. NOAA-20 was launched on 18 November 2017 and joined the Suomi National Polar-orbiting Partnership satellite in the same orbit. NOAA-20 operates about 50 minutes behind Suomi NPP, allowing important overlap in observational coverage. Circling the Earth from pole-to-pole, it crosses the equator about 14 times daily, providing full global coverage twice a day. This gives meteorologists information on "atmospheric temperature and moisture, clouds, sea-surface temperature, ocean color, sea ice cover, volcanic ash, and fire detection" so as to enhance weather forecasting including hurricane tracking, post-hurricane recovery by detailing storm damage and mapping of power outages.
NOAA-9, known as NOAA-F before launch, was an American weather satellite operated by the National Oceanic and Atmospheric Administration (NOAA) for use in the National Environmental Satellite Data and Information Service (NESDIS). It was the second of the Advanced TIROS-N series of satellites. The satellite design provided an economical and stable Sun-synchronous platform for advanced operational instruments to measure the atmosphere of Earth, its surface and cloud cover, and the near-space environment.
Land cover maps are tools that provide vital information about the Earth's land use and cover patterns. They aid policy development, urban planning, and forest and agricultural monitoring.
Thermal remote sensing is a branch of remote sensing in the thermal infrared region of the electromagnetic spectrum. Thermal radiation from ground objects is measured using a thermal band in satellite sensors.