Conformal geometric algebra

Last updated

Conformal geometric algebra (CGA) is the geometric algebra constructed over the resultant space of a map from points in an n-dimensional base space Rp,q to null vectors in Rp+1,q+1. This allows operations on the base space, including reflections, rotations and translations to be represented using versors of the geometric algebra; and it is found that points, lines, planes, circles and spheres gain particularly natural and computationally amenable representations.

Contents

The effect of the mapping is that generalized (i.e. including zero curvature) k-spheres in the base space map onto (k + 2)-blades, and so that the effect of a translation (or any conformal mapping) of the base space corresponds to a rotation in the higher-dimensional space. In the algebra of this space, based on the geometric product of vectors, such transformations correspond to the algebra's characteristic sandwich operations, similar to the use of quaternions for spatial rotation in 3D, which combine very efficiently. A consequence of rotors representing transformations is that the representations of spheres, planes, circles and other geometrical objects, and equations connecting them, all transform covariantly. A geometric object (a k-sphere) can be synthesized as the wedge product of k + 2 linearly independent vectors representing points on the object; conversely, the object can be decomposed as the repeated wedge product of vectors representing k + 2 distinct points in its surface. Some intersection operations also acquire a tidy algebraic form: for example, for the Euclidean base space R3, applying the wedge product to the dual of the tetravectors representing two spheres produces the dual of the trivector representation of their circle of intersection.

As this algebraic structure lends itself directly to effective computation, it facilitates exploration of the classical methods of projective geometry and inversive geometry in a concrete, easy-to-manipulate setting. It has also been used as an efficient structure to represent and facilitate calculations in screw theory. CGA has particularly been applied in connection with the projective mapping of the everyday Euclidean space R3 into a five-dimensional vector space R4,1, which has been investigated for applications in robotics and computer vision. It can be applied generally to any pseudo-Euclidean space - for example, Minkowski space R3,1 to the space R4,2.

Construction of CGA

Notation and terminology

In this article, the focus is on the algebra as it is this particular algebra that has been the subject of most attention over time; other cases are briefly covered in a separate section. The space containing the objects being modelled is referred to here as the base space, and the algebraic space used to model these objects as the representation or conformal space. A homogeneous subspace refers to a linear subspace of the algebraic space.

The terms for objects: point, line, circle, sphere, quasi-sphere etc. are used to mean either the geometric object in the base space, or the homogeneous subspace of the representation space that represents that object, with the latter generally being intended unless indicated otherwise. [lower-alpha 1] Algebraically, any nonzero null element of the homogeneous subspace will be used, with one element being referred to as normalized by some criterion.

Boldface lowercase Latin letters are used to represent position vectors from the origin to a point in the base space. Italic symbols are used for other elements of the representation space.

Base and representation spaces

The base space R3 is represented by extending a basis for the displacements from a chosen origin and adding two basis vectors e and e+ orthogonal to the base space and to each other, with e2 = −1 and e+2 = +1, creating the representation space .

It is convenient to use two null vectors no and n as basis vectors in place of e+ and e, where no = (ee+)/2, and n = e + e+. It can be verified, where x is in the base space, that:

These properties lead to the following formulas for the basis vector coefficients of a general vector r in the representation space for a basis with elements ei orthogonal to every other basis element:

The coefficient of no for r is nr
The coefficient of n for r is nor
The coefficient of ei for r is ei−1r.

Mapping between the base space and the representation space

The mapping from a vector in the base space (being from the origin to a point in the affine space represented) is given by the formula: [lower-alpha 2]

Points and other objects that differ only by a nonzero scalar factor all map to the same object in the base space. When normalisation is desired, as for generating a simple reverse map of a point from the representation space to the base space or determining distances, the condition g(x) ⋅ n = −1 may be used.

Change of normalisation: mapping the null cone from the hyperplane r [?] (n[?] - no) = 1 to the hyperplane r [?] n[?] = -1. Conformal Embedding.svg
Change of normalisation: mapping the null cone from the hyperplane r ⋅ (nno) = 1 to the hyperplane rn = −1.

The forward mapping is equivalent to:

Inverse mapping

An inverse mapping for X on the null cone is given (Perwass eqn 4.37) by

This first gives a stereographic projection from the light-cone onto the plane rn = −1, and then throws away the no and n parts, so that the overall result is to map all of the equivalent points αX = α(no + x + 1/2x2n) to x.

Origin and point at infinity

The point x = 0 in p,q maps to no in p+1,q+1, so no is identified as the (representation) vector of the point at the origin.

A vector in p+1,q+1 with a nonzero n coefficient, but a zero no coefficient, must (considering the inverse map) be the image of an infinite vector in p,q. The direction n therefore represents the (conformal) point at infinity. This motivates the subscripts o and for identifying the null basis vectors.

The choice of the origin is arbitrary: any other point may be chosen, as the representation is of an affine space. The origin merely represents a reference point, and is algebraically equivalent to any other point. As with any translation, changing the origin corresponds to a rotation in the representation space.

Geometrical objects

Basis

Together with and , these are the 32 basis blades of the algebra. The Flat Point Origin is written as an outer product because the geometric product is of mixed grade.().

Basis Blades of
ElementsGeometric Concept
Point and Dual Sphere
Without is Dual Plane
Point Pair
Bivector
Tangent vector
Direction vector (plus Bivector is Dual Line)
Flat Point Origin *
Circle
3D Pseudoscalar
Tangent Bivector
Direction Bivector (plus is the Line)
Sphere
Without is the Plane

As the solution of a pair of equations

Given any nonzero blade A of the representing space, the set of vectors that are solutions to a pair of homogeneous equations of the form [3]

is the union of homogeneous 1-d subspaces of null vectors, and is thus a representation of a set of points in the base space. This leads to the choice of a blade A as being a useful way to represent a particular class of geometric objects. Specific cases for the blade A (independent of the number of dimensions of the space) when the base space is Euclidean space are:

These each may split into three cases according to whether A2 is positive, zero or negative, corresponding (in reversed order in some cases) to the object as listed, a degenerate case of a single point, or no points (where the nonzero solutions of XA exclude null vectors).

The listed geometric objects (generalized n-spheres) become quasi-spheres in the more general case of the base space being pseudo-Euclidean. [4]

Flat objects may be identified by the point at infinity being included in the solutions. Thus, if nA = 0, the object will be a line, plane, etc., for the blade A respectively being of grade 3, 4, etc.

As derived from points of the object

A blade A representing of one of this class of object may be found as the outer product of linearly independent vectors representing points on the object. In the base space, this linear independence manifests as each point lying outside the object defined by the other points. So, for example, a fourth point lying on the generalized circle defined by three distinct points cannot be used as a fourth point to define a sphere.

odds

Points in e123 map onto the null cone—the null parabola if we set .
We can consider the locus of points in e123 s.t. in conformal space , for various types of geometrical object A.
We start by observing that

compare:

the inner product and outer product representations are related by dualisation

x∧A = 0 <=> x . A* = 0 (check—works if x is 1-dim, A is n-1 dim)

g(x) . A = 0

  • A point: the locus of x in R3 is a point if A in R4,1 is a vector on the null cone.
(N.B. that because it's a homogeneous projective space, vectors of any length on a ray through the origin are equivalent, so g(x).A =0 is equivalent to g(x).g(a) = 0).
  • A sphere: the locus of x is a sphere if A = S, a vector off the null cone.
If
then S.X = 0 =>
these are the points corresponding to a sphere
for a vector S off the null-cone, which directions are hyperbolically orthogonal? (cf Lorentz transformation pix)
in 2+1 D, if S is (1,a,b), (using co-ords e-, {e+, ei}), the points hyperbolically orthogonal to S are those euclideanly orthogonal to (-1,a,b)—i.e., a plane; or in n dimensions, a hyperplane through the origin. This would cut another plane not through the origin in a line (a hypersurface in an n-2 surface), and then the cone in two points (resp. some sort of n-3 conic surface). So it's going to probably look like some kind of conic. This is the surface that is the image of a sphere under g.
  • A plane: the locus of x is a plane if A = P, a vector with a zero no component. In a homogeneous projective space such a vector P represents a vector on the plane no=1 that would be infinitely far from the origin (ie infinitely far outside the null cone), so g(x).P =0 corresponds to x on a sphere of infinite radius, a plane.
In particular:
  • corresponds to x on a plane with normal an orthogonal distance α from the origin.
  • corresponds to a plane half way between a and b, with normal a - b
  • circles
  • tangent planes
  • lines
  • lines at infinity
  • point pairs

Transformations

  • reflections
It can be verified that forming P g(x) P gives a new direction on the null-cone, g(x' ), where x' corresponds to a reflection in the plane of points p in R3 that satisfy g(p) . P = 0.
g(x) . A = 0 => P g(x) . A P = 0 => P g(x) P . P A P (and similarly for the wedge product), so the effect of applying P sandwich-fashion to any the quantities A in the section above is similarly to reflect the corresponding locus of points x, so the corresponding circles, spheres, lines and planes corresponding to particular types of A are reflected in exactly the same way that applying P to g(x) reflects a point x.

This reflection operation can be used to build up general translations and rotations:

  • translations
Reflection in two parallel planes gives a translation,
If and then
  • rotations
corresponds to an x' that is rotated about the origin by an angle 2 θ where θ is the angle between a and b -- the same effect that this rotor would have if applied directly to x.
  • general rotations
rotations about a general point can be achieved by first translating the point to the origin, then rotating around the origin, then translating the point back to its original position, i.e. a sandwiching by the operator so
  • screws
the effect a screw , or motor, (a rotation about a general point, followed by a translation parallel to the axis of rotation) can be achieved by sandwiching g(x) by the operator .
M can also be parametrised (Chasles' theorem)
  • inversions
an inversion is a reflection in a sphere – various operations that can be achieved using such inversions are discussed at inversive geometry. In particular, the combination of inversion together with the Euclidean transformations translation and rotation is sufficient to express any conformal mapping – i.e. any mapping that universally preserves angles. (Liouville's theorem).
  • dilations
two inversions with the same centre produce a dilation.

Generalizations

History

Conferences and journals

There is a vibrant and interdisciplinary community around Clifford and Geometric Algebras with a wide range of applications. The main conferences in this subject include the International Conference on Clifford Algebras and their Applications in Mathematical Physics (ICCA) and Applications of Geometric Algebra in Computer Science and Engineering (AGACSE) series. A main publication outlet is the Springer journal Advances in Applied Clifford Algebras.

Notes

  1. For clarity, this homogeneous subspace includes non-null vectors, which do not correspond to any point in the base space.
  2. The mapping can also be written F : x → −(xe+) n (xe+), as given in Hestenes and Sobczyk (1984), p.303. [1] The equivalence of the two forms is noted in Lasenby and Lasenby (2000). [2]

Related Research Articles

In mathematics, a geometric algebra is an extension of elementary algebra to work with geometrical objects such as vectors. Geometric algebra is built out of two fundamental operations, addition and the geometric product. Multiplication of vectors results in higher-dimensional objects called multivectors. Compared to other formalisms for manipulating geometric objects, geometric algebra is noteworthy for supporting vector division and addition of objects of different dimensions.

<span class="mw-page-title-main">Vector space</span> Algebraic structure in linear algebra

In mathematics and physics, a vector space is a set whose elements, often called vectors, may be added together and multiplied ("scaled") by numbers called scalars. Scalars are often real numbers, but can be complex numbers or, more generally, elements of any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called vector axioms. Real vector space and complex vector space are kinds of vector spaces based on different kinds of scalars: real coordinate space or complex coordinate space.

<span class="mw-page-title-main">Linear subspace</span> In mathematics, vector subspace

In mathematics, and more specifically in linear algebra, a linear subspace or vector subspace is a vector space that is a subset of some larger vector space. A linear subspace is usually simply called a subspace when the context serves to distinguish it from other types of subspaces.

<span class="mw-page-title-main">Vector field</span> Assignment of a vector to each point in a subset of Euclidean space

In vector calculus and physics, a vector field is an assignment of a vector to each point in a space, most commonly Euclidean space . A vector field on a plane can be visualized as a collection of arrows with given magnitudes and directions, each attached to a point on the plane. Vector fields are often used to model, for example, the speed and direction of a moving fluid throughout three dimensional space, such as the wind, or the strength and direction of some force, such as the magnetic or gravitational force, as it changes from one point to another point.

<span class="mw-page-title-main">Riemann surface</span> One-dimensional complex manifold

In mathematics, particularly in complex analysis, a Riemann surface is a one-dimensional complex manifold.

<span class="mw-page-title-main">Translation (geometry)</span> Planar movement within a Euclidean space without rotation

In Euclidean geometry, a translation is a geometric transformation that moves every point of a figure, shape or space by the same distance in a given direction. A translation can also be interpreted as the addition of a constant vector to every point, or as shifting the origin of the coordinate system. In a Euclidean space, any translation is an isometry.

<span class="mw-page-title-main">Projective space</span> Completion of the usual space with "points at infinity"

In mathematics, the concept of a projective space originated from the visual effect of perspective, where parallel lines seem to meet at infinity. A projective space may thus be viewed as the extension of a Euclidean space, or, more generally, an affine space with points at infinity, in such a way that there is one point at infinity of each direction of parallel lines.

In mathematics, conformal geometry is the study of the set of angle-preserving (conformal) transformations on a space.

<span class="mw-page-title-main">Conformal group</span>

In mathematics, the conformal group of an inner product space is the group of transformations from the space to itself that preserve angles. More formally, it is the group of transformations that preserve the conformal geometry of the space.

<span class="mw-page-title-main">Rotation (mathematics)</span> Motion of a certain space that preserves at least one point

Rotation in mathematics is a concept originating in geometry. Any rotation is a motion of a certain space that preserves at least one point. It can describe, for example, the motion of a rigid body around a fixed point. Rotation can have a sign (as in the sign of an angle): a clockwise rotation is a negative magnitude so a counterclockwise turn has a positive magnitude. A rotation is different from other types of motions: translations, which have no fixed points, and (hyperplane) reflections, each of them having an entire (n − 1)-dimensional flat of fixed points in a n-dimensional space.

In the mathematical field of differential geometry, a Cartan connection is a flexible generalization of the notion of an affine connection. It may also be regarded as a specialization of the general concept of a principal connection, in which the geometry of the principal bundle is tied to the geometry of the base manifold using a solder form. Cartan connections describe the geometry of manifolds modelled on homogeneous spaces.

In projective geometry, duality or plane duality is a formalization of the striking symmetry of the roles played by points and lines in the definitions and theorems of projective planes. There are two approaches to the subject of duality, one through language and the other a more functional approach through special mappings. These are completely equivalent and either treatment has as its starting point the axiomatic version of the geometries under consideration. In the functional approach there is a map between related geometries that is called a duality. Such a map can be constructed in many ways. The concept of plane duality readily extends to space duality and beyond that to duality in any finite-dimensional projective geometry.

<span class="mw-page-title-main">Complex projective space</span>

In mathematics, complex projective space is the projective space with respect to the field of complex numbers. By analogy, whereas the points of a real projective space label the lines through the origin of a real Euclidean space, the points of a complex projective space label the complex lines through the origin of a complex Euclidean space (see below for an intuitive account). Formally, a complex projective space is the space of complex lines through the origin of an (n+1)-dimensional complex vector space. The space is denoted variously as P(Cn+1), Pn(C) or CPn. When n = 1, the complex projective space CP1 is the Riemann sphere, and when n = 2, CP2 is the complex projective plane (see there for a more elementary discussion).

In mathematics, a norm is a function from a real or complex vector space to the non-negative real numbers that behaves in certain ways like the distance from the origin: it commutes with scaling, obeys a form of the triangle inequality, and is zero only at the origin. In particular, the Euclidean distance in a Euclidean space is defined by a norm on the associated Euclidean vector space, called the Euclidean norm, the 2-norm, or, sometimes, the magnitude of the vector. This norm can be defined as the square root of the inner product of a vector with itself.

In mathematics, a Killing vector field, named after Wilhelm Killing, is a vector field on a Riemannian manifold that preserves the metric. Killing fields are the infinitesimal generators of isometries; that is, flows generated by Killing fields are continuous isometries of the manifold. More simply, the flow generates a symmetry, in the sense that moving each point of an object the same distance in the direction of the Killing vector will not distort distances on the object.

<span class="mw-page-title-main">Real coordinate space</span> Space formed by the n-tuples of real numbers

In mathematics, the real coordinate space or real coordinate n-space, of dimension n, denoted Rn or , is the set of the n-tuples of real numbers, that is the set of all sequences of n real numbers. Special cases are called the real lineR1, the real coordinate planeR2, and the real coordinate three-dimensional spaceR3. With component-wise addition and scalar multiplication, it is a real vector space, and its elements are called coordinate vectors.

In multilinear algebra, a multivector, sometimes called Clifford number or multor, is an element of the exterior algebra Λ(V) of a vector space V. This algebra is graded, associative and alternating, and consists of linear combinations of simplek-vectors (also known as decomposablek-vectors or k-blades) of the form

<span class="mw-page-title-main">Three-dimensional space</span> Geometric model of the physical space

In geometry, a three-dimensional space is a mathematical space in which three values (coordinates) are required to determine the position of a point. Most commonly, it is the three-dimensional Euclidean space, that is, the Euclidean space of dimension three, which models physical space. More general three-dimensional spaces are called 3-manifolds. The term may also refer colloquially to a subset of space, a three-dimensional region, a solid figure.

Clifford analysis, using Clifford algebras named after William Kingdon Clifford, is the study of Dirac operators, and Dirac type operators in analysis and geometry, together with their applications. Examples of Dirac type operators include, but are not limited to, the Hodge–Dirac operator, on a Riemannian manifold, the Dirac operator in euclidean space and its inverse on and their conformal equivalents on the sphere, the Laplacian in euclidean n-space and the Atiyah–Singer–Dirac operator on a spin manifold, Rarita–Schwinger/Stein–Weiss type operators, conformal Laplacians, spinorial Laplacians and Dirac operators on SpinC manifolds, systems of Dirac operators, the Paneitz operator, Dirac operators on hyperbolic space, the hyperbolic Laplacian and Weinstein equations.

<span class="mw-page-title-main">Riemann sphere</span> Model of the extended complex plane plus a point at infinity

In mathematics, the Riemann sphere, named after Bernhard Riemann, is a model of the extended complex plane: the complex plane plus one point at infinity. This extended plane represents the extended complex numbers, that is, the complex numbers plus a value for infinity. With the Riemann model, the point is near to very large numbers, just as the point is near to very small numbers.

References

  1. Hestenes, David and Garret Sobczyk (1984), Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics. Dordrecht: Reidel; pp. 302–303.
  2. Lasenby, AN and Lasenby, J (2000), Surface evolution and representation using geometric algebra; in The Mathematics of Surfaces IX: the 9th IMA Conference, Cambridge, 4–7 September 2000, pp. 144–168
  3. Chris Doran (2003), Circle and sphere blending with conformal geometric algebra
  4. Jayme Vaz, Jr.; Roldão da Rocha, Jr. (2016). An Introduction to Clifford Algebras and Spinors. Oxford University Press. p. 140. ISBN   9780191085789.

Bibliography

Books

Online resources