Quasi-sphere

Last updated

In mathematics and theoretical physics, a quasi-sphere is a generalization of the hypersphere and the hyperplane to the context of a pseudo-Euclidean space. It may be described as the set of points for which the quadratic form for the space applied to the displacement vector from a centre point is a constant value, with the inclusion of hyperplanes as a limiting case.

Contents

Notation and terminology

This article uses the following notation and terminology:

Definition

A quasi-sphere is a submanifold of a pseudo-Euclidean space Es,t consisting of the points u for which the displacement vector x = uo from a reference point o satisfies the equation

axx + bx + c = 0,

where a, cR and b, xRs,t. [2] [lower-alpha 4]

Since a = 0 in permitted, this definition includes hyperplanes; it is thus a generalization of generalized circles and their analogues in any number of dimensions. This inclusion provides a more regular structure under conformal transformations than if they are omitted.

This definition has been generalized to affine spaces over complex numbers and quaternions by replacing the quadratic form with a Hermitian form. [3]

A quasi-sphere P = {xX : Q(x) = k} in a quadratic space (X, Q) has a counter-sphereN = {xX : Q(x) = −k}. [lower-alpha 5] Furthermore, if k ≠ 0 and L is an isotropic line in X through x = 0, then L ∩ (PN) = ∅, puncturing the union of quasi-sphere and counter-sphere. One example is the unit hyperbola that forms a quasi-sphere of the hyperbolic plane, and its conjugate hyperbola, which is its counter-sphere.

Geometric characterizations

Centre and radial scalar square

The centre of a quasi-sphere is a point that has equal scalar square from every point of the quasi-sphere, the point at which the pencil of lines normal to the tangent hyperplanes meet. If the quasi-sphere is a hyperplane, the centre is the point at infinity defined by this pencil.

When a ≠ 0, the displacement vector p of the centre from the reference point and the radial scalar square r may be found as follows. We put Q(xp) = r, and comparing to the defining equation above for a quasi-sphere, we get

The case of a = 0 may be interpreted as the centre p being a well-defined point at infinity with either infinite or zero radial scalar square (the latter for the case of a null hyperplane). Knowing p (and r) in this case does not determine the hyperplane's position, though, only its orientation in space.

The radial scalar square may take on a positive, zero or negative value. When the quadratic form is definite, even though p and r may be determined from the above expressions, the set of vectors x satisfying the defining equation may be empty, as is the case in a Euclidean space for a negative radial scalar square.

Diameter and radius

Any pair of points, which need not be distinct, (including the option of up to one of these being a point at infinity) defines a diameter of a quasi-sphere. The quasi-sphere is the set of points for which the two displacement vectors from these two points are orthogonal.

Any point may be selected as a centre (including a point at infinity), and any other point on the quasi-sphere (other than a point at infinity) define a radius of a quasi-sphere, and thus specifies the quasi-sphere.

Partitioning

Referring to the quadratic form applied to the displacement vector of a point on the quasi-sphere from the centre (i.e. Q(xp)) as the radial scalar square, in any pseudo-Euclidean space the quasi-spheres may be separated into three disjoint sets: those with positive radial scalar square, those with negative radial scalar square, those with zero radial scalar square. [lower-alpha 6]

In a space with a positive-definite quadratic form (i.e. a Euclidean space), a quasi-sphere with negative radial scalar square is the empty set, one with zero radial scalar square consists of a single point, one with positive radial scalar square is a standard n-sphere, and one with zero curvature is a hyperplane that is partitioned with the n-spheres.

See also

Notes

  1. Some authors exclude the definite cases, but in the context of this article, the qualifier indefinite will be used where this exclusion is intended.
  2. The symmetric bilinear form applied to the two vectors is also called their scalar product.
  3. The associated symmetric bilinear form of a (real) quadratic form Q is defined such that Q(x) = B(x, x), and may be determined as B(x, y) = 1/4(Q(x + y) − Q(xy)). See Polarization identity for variations of this identity.
  4. Though not mentioned in the source, we must exclude the combination b = 0 and a = 0.
  5. There are caveats when Q is definite. Also, when k = 0, it follows that N = P.
  6. A hyperplane (a quasi-sphere with infinite radial scalar square or zero curvature) is partitioned with quasi-spheres to which it is tangent. The three sets may be defined according to whether the quadratic form applied to a vector that is a normal of the tangent hypersurface is positive, zero or negative. The three sets of objects are preserved under conformal transformations of the space.

Related Research Articles

Euclidean space Fundamental space of geometry

Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's Elements, it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean spaces of any positive integer dimension, including the three-dimensional space and the Euclidean plane. The qualifier "Euclidean" is used to distinguish Euclidean spaces from other spaces that were later considered in physics and modern mathematics.

Curvature Measure of the property of a curve or a surface to be "bended"

In mathematics, curvature is any of several strongly related concepts in geometry. Intuitively, the curvature is the amount by which a curve deviates from being a straight line, or a surface deviates from being a plane.

Vector field Assignment of a vector to each point in a subset of Euclidean space

In vector calculus and physics, a vector field is an assignment of a vector to each point in a subset of space. For instance, a vector field in the plane can be visualised as a collection of arrows with a given magnitude and direction, each attached to a point in the plane. Vector fields are often used to model, for example, the speed and direction of a moving fluid throughout space, or the strength and direction of some force, such as the magnetic or gravitational force, as it changes from one point to another point.

In mathematics, a quadric or quadric surface, is a generalization of conic sections. It is a hypersurface in a (D + 1)-dimensional space, and it is defined as the zero set of an irreducible polynomial of degree two in D + 1 variables. When the defining polynomial is not absolutely irreducible, the zero set is generally not considered a quadric, although it is often called a degenerate quadric or a reducible quadric.

Hyperboloid Unbounded quadric surface

In geometry, a hyperboloid of revolution, sometimes called a circular hyperboloid, is the surface generated by rotating a hyperbola around one of its principal axes. A hyperboloid is the surface obtained from a hyperboloid of revolution by deforming it by means of directional scalings, or more generally, of an affine transformation.

Normal (geometry) Line or vector perpendicular to a curve or a surface

In geometry, a normal is an object such as a line, ray, or vector that is perpendicular to a given object. For example, the normal line to a plane curve at a given point is the (infinite) line perpendicular to the tangent line to the curve at the point. A normal vector may have length one or its length may represent the curvature of the object ; its algebraic sign may indicate sides.

Minkowski space Four-dimensional, pseudo-Euclidean spacetime used in theory of relativity

In mathematical physics, Minkowski space is a combination of three-dimensional Euclidean space and time into a four-dimensional manifold where the spacetime interval between any two events is independent of the inertial frame of reference in which they are recorded. Although initially developed by mathematician Hermann Minkowski for Maxwell's equations of electromagnetism, the mathematical structure of Minkowski spacetime was shown to be implied by the postulates of special relativity.

Projective space Completion of the usual space with "points at infinity"

In mathematics, the concept of a projective space originated from the visual effect of perspective, where parallel lines seem to meet at infinity. A projective space may thus be viewed as the extension of a Euclidean space, or, more generally, an affine space with points at infinity, in such a way that there is one point at infinity of each direction of parallel lines.

Pseudo-Riemannian manifold Differentiable manifold with nondegenerate metric tensor

In differential geometry, a pseudo-Riemannian manifold, also called a semi-Riemannian manifold, is a differentiable manifold with a metric tensor that is everywhere nondegenerate. This is a generalization of a Riemannian manifold in which the requirement of positive-definiteness is relaxed.

In mathematics, conformal geometry is the study of the set of angle-preserving (conformal) transformations on a space.

Affine space Geometric structure that generalizes the Euclidean space

In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties related to parallelism and ratio of lengths for parallel line segments.

In geometry, a striking feature of projective planes is the symmetry of the roles played by points and lines in the definitions and theorems, and (plane) duality is the formalization of this concept. There are two approaches to the subject of duality, one through language and the other a more functional approach through special mappings. These are completely equivalent and either treatment has as its starting point the axiomatic version of the geometries under consideration. In the functional approach there is a map between related geometries that is called a duality. Such a map can be constructed in many ways. The concept of plane duality readily extends to space duality and beyond that to duality in any finite-dimensional projective geometry.

In mathematics, specifically linear algebra, a degenerate bilinear formf (x, y ) on a vector space V is a bilinear form such that the map from V to V given by v is not an isomorphism. An equivalent definition when V is finite-dimensional is that it has a non-trivial kernel: there exist some non-zero x in V such that

In mathematics, a norm is a function from a real or complex vector space to the non-negative real numbers that behaves in certain ways like the distance from the origin: it commutes with scaling, obeys a form of the triangle inequality, and is zero only at the origin. In particular, the Euclidean distance of a vector from the origin is a norm, called the Euclidean norm, or 2-norm, which may also be defined as the square root of the inner product of a vector with itself.

Null vector Vector on which a quadratic form is zero

In mathematics, given a vector space X with an associated quadratic form q, written (X, q), a null vector or isotropic vector is a non-zero element x of X for which q(x) = 0.

Pencil (geometry)

In geometry, a pencil is a family of geometric objects with a common property, for example the set of lines that pass through a given point in a plane, or the set of circles that pass through two given points in a plane.

In mathematics, a quadratic form over a field F is said to be isotropic if there is a non-zero vector on which the form evaluates to zero. Otherwise the quadratic form is anisotropic. More precisely, if q is a quadratic form on a vector space V over F, then a non-zero vector v in V is said to be isotropic if q(v) = 0. A quadratic form is isotropic if and only if there exists a non-zero isotropic vector for that quadratic form.

In mathematics and theoretical physics, a pseudo-Euclidean space is a finite-dimensional real n-space together with a non-degenerate quadratic form q. Such a quadratic form can, given a suitable choice of basis (e1, …, en), be applied to a vector x = x1e1 + ⋯ + xnen, giving

Lie sphere geometry Geometry founded on spheres

Lie sphere geometry is a geometrical theory of planar or spatial geometry in which the fundamental concept is the circle or sphere. It was introduced by Sophus Lie in the nineteenth century. The main idea which leads to Lie sphere geometry is that lines should be regarded as circles of infinite radius and that points in the plane should be regarded as circles of zero radius.

In mathematics and physics, a vector is an element of a vector space. For many specific vector spaces, the vectors have received specific names, which are listed below. In general, a Euclidean vector is a geometric object with both length and direction, which is frequently represented as an arrow which starting point is arbitrary and thus chosen for convenience. Such vectors can be added to each other or scaled using vector algebra. Correspondingly, an ensemble of vectors is called a vector space. These objects are the subject of linear algebra and can be characterized by their dimension.

References

  1. Élie Cartan (1981) [First published in 1937 in French, and in 1966 in English], The Theory of Spinors, Dover Publications, p. 3, ISBN   0486640701
  2. Jayme Vaz, Jr.; Roldão da Rocha, Jr. (2016). An Introduction to Clifford Algebras and Spinors. Oxford University Press. p. 140. ISBN   9780191085789.
  3. Ian R. Porteous (1995), Clifford Algebras and the Classical Groups, Cambridge University Press