Cortistatins

Last updated
Cortistatin A
Cortistatin A structure.svg
Names
IUPAC name
(1R,2R,3S,5R,8β,17β)-3-(Dimethylamino)-17-(isoquinolin-7-yl)-5,8-epoxy-9,19-cyclo-9,10-secoandrosta-9(11),10-diene-1,2-diol
Other names
Cortistatine A
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
PubChem CID
UNII
  • InChI=1S/C30H36N2O3/c1-28-10-8-21-15-23-26(33)27(34)24(32(2)3)16-29(23)11-12-30(21,35-29)25(28)7-6-22(28)19-5-4-18-9-13-31-17-20(18)14-19/h4-5,8-9,13-15,17,22,24-27,33-34H,6-7,10-12,16H2,1-3H3/t22-,24+,25-,26-,27-,28-,29-,30-/m1/s1
    Key: KSGZCKSNTAJOJS-DZBMUNJRSA-N
  • InChI=1/C30H36N2O3/c1-28-10-8-21-15-23-26(33)27(34)24(32(2)3)16-29(23)11-12-30(21,35-29)25(28)7-6-22(28)19-5-4-18-9-13-31-17-20(18)14-19/h4-5,8-9,13-15,17,22,24-27,33-34H,6-7,10-12,16H2,1-3H3/t22-,24+,25-,26-,27-,28-,29-,30-/m1/s1
    Key: KSGZCKSNTAJOJS-DZBMUNJRBJ
  • C[C@]12CC=C3C=C4[C@H]([C@@H]([C@H](C[C@]45CC[C@@]3([C@@H]1CC[C@@H]2c6ccc7ccncc7c6)O5)N(C)C)O)O
Properties
C30H36N2O3
Molar mass 472.629 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

The cortistatins are a group of steroidal alkaloids first isolated in 2006 from the marine sponge Corticium simplex . [1] The cortistatins were first discovered in a search for naturally occurring compounds that inhibit proliferation of human umbilical vein endothelial cells (HUVECs), with cortistatin A being the most potent compound in the class. [2]

The Shair group at Harvard along with collaborators have shown that cortistatin A is a highly potent and selective inhibitor of CDK8 and CDK19, the kinases that associate with Mediator complex. [3] Out of 386 kinases evaluated, cortistatin A only inhibited CDK8 and CDK19, revealing that it is among the most selective kinase inhibitors. It was also shown that cortistatin A potently inhibits growth of acute myeloid leukemia cells and AML in two in vivo mouse models. Identification of dominant drug-resistant alleles of CDK8 and CDK19 demonstrate that these kinases mediate the activity of cortistatin A in AML cells. Thus, inhibition of CDK8 and CDK19 is a new therapeutic approach to AML. Cortistatin A caused selective and disproportionate up-regulation of super-enhancer-associated genes in AML cells which contributed to its anti-leukemic activity. This work indicated that CDK8 and CDK19 are negative regulators of super-enhancer-associated genes in AML.

Di-dehydrocortistatin A suppresses viral replication in cells infected with HIV via binding to the Tat protein. [4]

Cortistatin A was synthesized first by Baran, [5] thereafter by Shair, [6] Myers, and Nicolaou labs. [7]

Chemical structures

Related Research Articles

<span class="mw-page-title-main">Angiogenesis</span> Blood vessel formation, when new vessels emerge from existing vessels

Angiogenesis is the physiological process through which new blood vessels form from pre-existing vessels, formed in the earlier stage of vasculogenesis. Angiogenesis continues the growth of the vasculature mainly by processes of sprouting and splitting, but processes such as coalescent angiogenesis, vessel elongation and vessel cooption also play a role. Vasculogenesis is the embryonic formation of endothelial cells from mesoderm cell precursors, and from neovascularization, although discussions are not always precise. The first vessels in the developing embryo form through vasculogenesis, after which angiogenesis is responsible for most, if not all, blood vessel growth during development and in disease.

<span class="mw-page-title-main">Batrachotoxin</span> Chemical compound

Batrachotoxin (BTX) is an extremely potent cardio- and neurotoxic steroidal alkaloid found in certain species of beetles, birds, and frogs. The name is from the Greek word βάτραχος, bátrachos, 'frog'. Structurally-related chemical compounds are often referred to collectively as batrachotoxins. In certain frogs, this alkaloid is present mostly on the skin. Such frogs are among those used for poisoning darts. Batrachotoxin binds to and irreversibly opens the sodium channels of nerve cells and prevents them from closing, resulting in paralysis and death. No antidote is known.

<span class="mw-page-title-main">GSK-3</span> Class of enzymes

Glycogen synthase kinase 3 (GSK-3) is a serine/threonine protein kinase that mediates the addition of phosphate molecules onto serine and threonine amino acid residues. First discovered in 1980 as a regulatory kinase for its namesake, glycogen synthase (GS), GSK-3 has since been identified as a protein kinase for over 100 different proteins in a variety of different pathways. In mammals, including humans, GSK-3 exists in two isozymes encoded by two homologous genes GSK-3α (GSK3A) and GSK-3β (GSK3B). GSK-3 has been the subject of much research since it has been implicated in a number of diseases, including type 2 diabetes, Alzheimer's disease, inflammation, cancer, addiction and bipolar disorder.

<span class="mw-page-title-main">Tropinone</span> Chemical compound

Tropinone is an alkaloid, famously synthesised in 1917 by Robert Robinson as a synthetic precursor to atropine, a scarce commodity during World War I. Tropinone and the alkaloids cocaine and atropine all share the same tropane core structure. Its corresponding conjugate acid at pH 7.3 major species is known as tropiniumone.

Vascular endothelial growth factor, originally known as vascular permeability factor (VPF), is a signal protein produced by many cells that stimulates the formation of blood vessels. To be specific, VEGF is a sub-family of growth factors, the platelet-derived growth factor family of cystine-knot growth factors. They are important signaling proteins involved in both vasculogenesis and angiogenesis.

An angiogenesis inhibitor is a substance that inhibits the growth of new blood vessels (angiogenesis). Some angiogenesis inhibitors are endogenous and a normal part of the body's control and others are obtained exogenously through pharmaceutical drugs or diet.

<span class="mw-page-title-main">Angiogenin</span> Protein-coding gene in the species Homo sapiens

Angiogenin (ANG) also known as ribonuclease 5 is a small 123 amino acid protein that in humans is encoded by the ANG gene. Angiogenin is a potent stimulator of new blood vessels through the process of angiogenesis. Ang hydrolyzes cellular RNA, resulting in modulated levels of protein synthesis and interacts with DNA causing a promoter-like increase in the expression of rRNA. Ang is associated with cancer and neurological disease through angiogenesis and through activating gene expression that suppresses apoptosis.

<span class="mw-page-title-main">Chelerythrine</span> Chemical compound

Chelerythrine is a benzophenanthridine alkaloid present in the plant Chelidonium majus. It is a potent, selective, and cell-permeable protein kinase C inhibitor in vitro. And an efficacious antagonist of G-protein-coupled CB1 receptors. This molecule also exhibits anticancer qualities and it has served as a base for many potential novel drugs against cancer. Structurally, this molecule has two distinct conformations, one being a positively charged iminium form, and the other being an uncharged form, a pseudo-base.

<span class="mw-page-title-main">MAPK7</span> Protein-coding gene in the species Homo sapiens

Mitogen-activated protein kinase 7 also known as MAP kinase 7 is an enzyme that in humans is encoded by the MAPK7 gene.

<span class="mw-page-title-main">Cyclin-dependent kinase 8</span> Protein-coding gene in the species Homo sapiens

Cell division protein kinase 8 is an enzyme that in humans is encoded by the CDK8 gene.

<span class="mw-page-title-main">Thiostrepton</span> Chemical compound

Thiostrepton is a natural cyclic oligopeptide antibiotic of the thiopeptide class, derived from several strains of streptomycetes, such as Streptomyces azureus and Streptomyces laurentii. Thiostrepton is a natural product of the ribosomally synthesized and post-translationally modified peptide (RiPP) class.

Fasudil (INN) is a potent Rho-kinase inhibitor and vasodilator. Since it was discovered, it has been used for the treatment of cerebral vasospasm, which is often due to subarachnoid hemorrhage, as well as to improve the cognitive decline seen in stroke patients. It has been found to be effective for the treatment of pulmonary hypertension. It has been demonstrated that fasudil could improve memory in normal mice, identifying the drug as a possible treatment for age-related or neurodegenerative memory loss.

Angiogenesis is the process of forming new blood vessels from existing blood vessels, formed in vasculogenesis. It is a highly complex process involving extensive interplay between cells, soluble factors, and the extracellular matrix (ECM). Angiogenesis is critical during normal physiological development, but it also occurs in adults during inflammation, wound healing, ischemia, and in pathological conditions such as rheumatoid arthritis, hemangioma, and tumor growth. Proteolysis has been indicated as one of the first and most sustained activities involved in the formation of new blood vessels. Numerous proteases including matrix metalloproteinases (MMPs), a disintegrin and metalloproteinase domain (ADAM), a disintegrin and metalloproteinase domain with throbospondin motifs (ADAMTS), and cysteine and serine proteases are involved in angiogenesis. This article focuses on the important and diverse roles that these proteases play in the regulation of angiogenesis.

<span class="mw-page-title-main">Crenolanib</span> Chemical compound

Crenolanib besylate is an investigational inhibitor being developed by AROG Pharmaceuticals, LLC. The compound is currently being evaluated for safety and efficacy in clinical trials for various types of cancer, including acute myeloid leukemia (AML), gastrointestinal stromal tumor (GIST), and glioma. Crenolanib is an orally bioavailable benzimidazole that selectively and potently inhibits signaling of wild-type and mutant isoforms of class III receptor tyrosine kinases (RTK) FLT3, PDGFR α, and PDGFR β. Unlike most RTK inhibitors, crenolanib is a type I mutant-specific inhibitor that preferentially binds to phosphorylated active kinases with the ‘DFG in’ conformation motif.

<span class="mw-page-title-main">Volasertib</span> Chemical compound

Volasertib is an experimental small molecule inhibitor of the PLK1 protein being developed by Boehringer Ingelheim for use as an anti-cancer agent. Volasertib is the second in a novel class of drugs called dihydropteridinone derivatives.

<span class="mw-page-title-main">Balanol</span> Fungal metabolite

Balanol is a fungal metabolite produced by the fungus Verticillium balanoides. It is a potent inhibitor of the serine/threonine kinases protein kinase A (PKA) and protein kinase C (PKC), binding in a similar manner with that of ATP. Balanol was discovered in 1993 in the search for novel inhibitors of PKC, a member of a family of serine/threonine kinases whose overactivation is associated with numerous human diseases of signal transduction including cancer. However, much of the research on balanol focuses on how chemical modifications of the molecular structure affect binding to PKA. Indeed, balanol, its chemically altered analogs, and their interactions with PKA in particular are used to illuminate the roles of selectivity and protein flexibility in the inhibition of kinases. For instance, the X-ray crystal structure of balanol in complex with PKA was used in order to confer selectivity and to improve pharmacological efficacy of inhibitors of the H. sapiens Akt (PKB), another serine/threonine protein kinase implicated in the proper functioning of many cellular processes.

4-Nonylphenylboronic acid is a potent and selective inhibitor of the enzyme fatty acid amide hydrolase (FAAH), with an IC50 of 9.1nM, and 870x selectivity for FAAH over the related enzyme MAGL, which it inhibits with an IC50 of 7900nM. It is also a weaker inhibitor of the enzymes endothelial lipase and lipoprotein lipase, with IC50 values of 100 nM and 1400 nM respectively.

<span class="mw-page-title-main">Immunomodulatory imide drug</span> Class of immunomodulatory drugs

Immunomodulatory imide drugs (IMiDs) are a class of immunomodulatory drugs containing an imide group. The IMiD class includes thalidomide and its analogues. These drugs may also be referred to as 'Cereblon modulators'. Cereblon (CRBN) is the protein targeted by this class of drugs.

VEGFR-2 inhibitor, also known as kinase insert domain receptor(KDR) inhibitor, are tyrosine kinase receptor inhibitors that reduce angiogenesis or lymphangiogenesis, leading to anticancer activity. Generally they are small, synthesised molecules that bind competitively to the ATP-site of the tyrosine kinase domain. VEGFR-2 selective inhibitor can interrupt multiple signaling pathways involved in tumor, including proliferation, metastasis and angiogenesis.

2-Methoxyethoxymethyl chloride is an organic compound with formula CH3OCH2CH2OCH2Cl. A colorless liquid, it is classified as a chloroalkyl ether. It is used as an alkylating agent. In organic synthesis, it is used for introducing the methoxyethoxy ether (MEM) protecting group. MEM protecting groups are generally preferred to methoxymethyl (MOM) protecting groups, both in terms of formation and removal.

References

  1. Aoki, S; Watanabe, Y; Sanagawa, M; Setiawan, A; Kotoku, N; Kobayashi, M (2006). "Cortistatins A, B, C, and D, anti-angiogenic steroidal alkaloids, from the marine sponge Corticium simplex". Journal of the American Chemical Society. 128 (10): 3148–9. doi:10.1021/ja057404h. PMID   16522087.
  2. Aoki, S; Watanabe, Y; Tanabe, D; Arai, M; Suna, H; Miyamoto, K; Tsujibo, H; Tsujikawa, K; Yamamoto, H (2007). "Structure-activity relationship and biological property of cortistatins, anti-angiogenic spongean steroidal alkaloids". Bioorganic & Medicinal Chemistry. 15 (21): 6758–62. doi:10.1016/j.bmc.2007.08.017. PMID   17765550.
  3. Pelish, Henry E.; Liau, Brian B.; Nitulescu, Ioana I.; Tangpeerachaikul, Anupong; Poss, Zachary C.; Silva, Diogo H. Da; Caruso, Brittany T.; Arefolov, Alexander; Fadeyi, Olugbeminiyi (2015). "Mediator kinase inhibition further activates super-enhancer-associated genes in AML". Nature. 526 (7572): 273–276. Bibcode:2015Natur.526..273P. doi:10.1038/nature14904. PMC   4641525 . PMID   26416749.
  4. Mousseau, G.; Clementz, M. A.; Bakeman, W. N.; Nagarsheth, N.; Cameron, M.; Shi, J.; Baran, P.; Fromentin, R. M.; Chomont, N.; Valente, S. T. (2012). "An Analog of the Natural Steroidal Alkaloid Cortistatin a Potently Suppresses Tat-Dependent HIV Transcription". Cell Host & Microbe. 12 (1): 97–108. doi:10.1016/j.chom.2012.05.016. PMC   3403716 . PMID   22817991.
  5. Shenvi, Ryan A.; Guerrero, Carlos A.; Shi, Jun; Li, Chuang-Chuang; Baran, Phil S. (2008). "Synthesis of (+)-Cortistatin A". Journal of the American Chemical Society. 130 (23): 7241–7243. doi:10.1021/ja8023466. PMC   2652360 . PMID   18479104.
  6. Lee, Hong Myung; Nieto-Oberhuber, Cristina; Shair, Matthew D. (2008-12-17). "Enantioselective Synthesis of (+)-Cortistatin A, a Potent and Selective Inhibitor of Endothelial Cell Proliferation". Journal of the American Chemical Society. 130 (50): 16864–16866. doi:10.1021/ja8071918. ISSN   0002-7863. PMID   19053422. S2CID   207132632.
  7. Nicolaou, K. C.; Sun, Ya-Ping; Peng, Xiao-Shui; Polet, Damien; Chen, David Y.-K. (2008). "Total Synthesis of (+)-Cortistatin A". Angewandte Chemie International Edition. 47 (38): 7310–7313. doi:10.1002/anie.200803550. PMID   18704899.