Crookes radiometer

Last updated

Crookes radiometer Crookes radiometer.jpg
Crookes radiometer

The Crookes radiometer (also known as a light mill) consists of an airtight glass bulb containing a partial vacuum, with a set of vanes which are mounted on a spindle inside. The vanes rotate when exposed to light, with faster rotation for more intense light, providing a quantitative measurement of electromagnetic radiation intensity.

Contents

The reason for the rotation was a cause of much scientific debate in the ten years following the invention of the device, [1] [2] but in 1879 the currently accepted explanation for the rotation was published. [3] [4] Today the device is mainly used in physics education as a demonstration of a heat engine run by light energy.

It was invented in 1873 by the chemist Sir William Crookes as the by-product of some chemical research. In the course of very accurate quantitative chemical work, he was weighing samples in a partially evacuated chamber to reduce the effect of air currents, and noticed the weighings were disturbed when sunlight shone on the balance. Investigating this effect, he created the device named after him.

It is still manufactured and sold as an educational aid or for curiosity.

General description

A Crookes radiometer in action Radiometer 9965 Nevit.gif
A Crookes radiometer in action

The radiometer is made from a glass bulb from which much of the air has been removed to form a partial vacuum. Inside the bulb, on a low-friction spindle, is a rotor with several (usually four) vertical lightweight vanes spaced equally around the axis. The vanes are polished or white on one side and black on the other.

When exposed to sunlight, artificial light, or infrared radiation (even the heat of a hand nearby can be enough), the vanes turn with no apparent motive power, the dark sides retreating from the radiation source and the light sides advancing.

Cooling the outside of the radiometer rapidly causes rotation in the opposite direction. [5]

Effect observations

The effect begins to be observed at partial vacuum pressures of several hundred pascals (or several torrs), reaches a peak at around 1 pascal (0.0075 torrs) and has disappeared by the time the vacuum reaches 1×10−4 pascals (7.5×10−7 torrs) (see explanations note 1). At these very high vacuums the effect of photon radiation pressure on the vanes can be observed in very sensitive apparatus (see Nichols radiometer), but this is insufficient to cause rotation.

Origin of the name

The prefix "radio-" in the title originates from the combining form of Latin radius, a ray: here it refers to electromagnetic radiation. A Crookes radiometer, consistent with the suffix "-meter" in its title, can provide a quantitative measurement of electromagnetic radiation intensity. This can be done, for example, by visual means (e.g., a spinning slotted disk, which functions as a simple stroboscope) without interfering with the measurement itself.

Radiometers are now commonly sold worldwide as a novelty ornament; needing no batteries, but only light to get the vanes to turn. They come in various forms, such as the one pictured, and are often used in science museums to illustrate "radiation pressure" a scientific principle that they do not in fact demonstrate.

Thermodynamic explanation

A Crookes radiometer in action with the light switched on and off. (Note that the explanation given in the caption to the clip doesn't agree with the modern explanation.)

Movement with absorption

When a radiant energy source is directed at a Crookes radiometer, the radiometer becomes a heat engine. [6] The operation of a heat engine is based on a difference in temperature that is converted to a mechanical output. In this case, the black side of the vane becomes hotter than the other side, as radiant energy from a light source warms the black side by absorption faster than the silver or white side. The internal air molecules are heated up when they touch the black side of the vane. The warmer side of the vane is subjected to a force which moves it forward.

The internal temperature rises as the black vanes impart heat to the air molecules, but the molecules are cooled again when they touch the bulb's glass surface, which is at ambient temperature. This heat loss through the glass keeps the internal bulb temperature steady with the result that the two sides of the vanes develop a temperature difference. The white or silver side of the vanes are slightly warmer than the internal air temperature but cooler than the black side, as some heat conducts through the vane from the black side. The two sides of each vane must be thermally insulated to some degree so that the polished or white side does not immediately reach the temperature of the black side. If the vanes are made of metal, then the black or white paint can be the insulation. The glass stays much closer to ambient temperature than the temperature reached by the black side of the vanes. The external air helps conduct heat away from the glass. [6]

The air pressure inside the bulb needs to strike a balance between too low and too high. A strong vacuum inside the bulb does not permit motion, because there are not enough air molecules to cause the air currents that propel the vanes and transfer heat to the outside before both sides of each vane reach thermal equilibrium by heat conduction through the vane material. High inside pressure inhibits motion because the temperature differences are not enough to push the vanes through the higher concentration of air: there is too much air resistance for "eddy currents" to occur, and any slight air movement caused by the temperature difference is damped by the higher pressure before the currents can "wrap around" to the other side. [6]

Movement with radiation

When the radiometer is heated in the absence of a light source, it turns in the forward direction (i.e. black sides trailing). If a person's hands are placed around the glass without touching it, the vanes will turn slowly or not at all, but if the glass is touched to warm it quickly, they will turn more noticeably. Directly heated glass gives off enough infrared radiation to turn the vanes, but glass blocks much of the far-infrared radiation from a source of warmth not in contact with it. However, near-infrared and visible light more easily penetrate the glass.

If the glass is cooled quickly in the absence of a strong light source by putting ice on the glass or placing it in the freezer with the door almost closed, it turns backwards (i.e. the silver sides trail). This demonstrates radiation from the black sides of the vanes rather than absorption. The wheel turns backwards because the net exchange of heat between the black sides and the environment initially cools the black sides faster than the white sides. Upon reaching equilibrium, typically after a minute or two, reverse rotation ceases. This contrasts with sunlight, with which forward rotation can be maintained all day.

Explanations for the force on the vanes

Over the years, there have been many attempts to explain how a Crookes radiometer works:

Incorrect theories

Crookes incorrectly suggested that the force was due to the pressure of light. [7] This theory was originally supported by James Clerk Maxwell, who had predicted this force. This explanation is still often seen in leaflets packaged with the device. The first experiment to test this theory was done by Arthur Schuster in 1876, who observed that there was a force on the glass bulb of the Crookes radiometer that was in the opposite direction to the rotation of the vanes. This showed that the force turning the vanes was generated inside the radiometer. If light pressure were the cause of the rotation, then the better the vacuum in the bulb, the less air resistance to movement, and the faster the vanes should spin. In 1901, with a better vacuum pump, Pyotr Lebedev showed that in fact, the radiometer only works when there is low-pressure gas in the bulb, and the vanes stay motionless in a hard vacuum. [8] Finally, if light pressure were the motive force, the radiometer would spin in the opposite direction, as the photons on the shiny side being reflected would deposit more momentum than on the black side, where the photons are absorbed. This results from conservation of momentum – the momentum of the reflected photon exiting on the light side must be matched by a reaction on the vane that reflected it. The actual pressure exerted by light is far too small to move these vanes, but can be measured with devices such as the Nichols radiometer. It is in fact possible to make the radiometer spin in the opposite direction by either heating it or putting it in a cold environment (like a freezer) in absence of light, when black sides become cooler than the white ones due to the thermal radiation.

Another incorrect theory was that the heat on the dark side was causing the material to outgas, which pushed the radiometer around. This was later effectively disproved by both Schuster's experiments [9] (1876) and Lebedev's (1901) [8]

Partially correct theory

A partial explanation is that gas molecules hitting the warmer side of the vane will pick up some of the heat, bouncing off the vane with increased speed. Giving the molecule this extra boost effectively means that a minute pressure is exerted on the vane. The imbalance of this effect between the warmer black side and the cooler silver side means the net pressure on the vane is equivalent to a push on the black side and as a result the vanes spin round with the black side trailing. The problem with this idea is that while the faster moving molecules produce more force, they also do a better job of stopping other molecules from reaching the vane, so the net force on the vane should be the same. The greater temperature causes a decrease in local density which results in the same force on both sides. Years after this explanation was dismissed, Albert Einstein showed that the two pressures do not cancel out exactly at the edges of the vanes because of the temperature difference there. The force predicted by Einstein would be enough to move the vanes, but not fast enough. [10]

Currently accepted theory

The currently accepted theory was formulated by Osborne Reynolds, who theorized that thermal transpiration was the cause of the motion. [11] Reynolds found that if a porous plate is kept hotter on one side than the other, the interactions between gas molecules and the plates are such that gas will flow through from the cooler to the hotter side. The vanes of a typical Crookes radiometer are not porous, but the space past their edges behaves like the pores in Reynolds's plate. As gas moves from the cooler to the hotter side, the pressure on the hotter side increases. When the plate is fixed, the pressure on the hotter side increases until the ratio of pressures between the sides equals the square root of the ratio of absolute temperatures. Because the plates in a radiometer are not fixed, the pressure difference from cooler to hotter side causes the vane to move. The cooler (white) side moves forward, pushed by the higher pressure behind it. From a molecular point of view, the vane moves due to the tangential force of the rarefied gas colliding differently with the edges of the vane between the hot and cold sides. [3]

The Reynolds paper went unpublished for a while because it was refereed by Maxwell, who then published a paper of his own, which contained a critique of the mathematics in Reynolds's unpublished paper. [12] Maxwell died that year and the Royal Society refused to publish Reynolds's critique of Maxwell's rebuttal to Reynolds's unpublished paper, as it was felt that this would be an inappropriate argument when one of the people involved had already died. [3]

All-black light mill

To rotate, a light mill does not have to be coated with different colors across each vane. In 2009, researchers at the University of Texas, Austin created a monocolored light mill which has four curved vanes; each vane forms a convex and a concave surface. The light mill is uniformly coated by gold nanocrystals, which are a strong light absorber. Upon exposure, due to geometric effect, the convex side of the vane receives more photon energy than the concave side does, and subsequently the gas molecules receive more heat from the convex side than from the concave side. At rough vacuum, this asymmetric heating effect generates a net gas movement across each vane, from the concave side to the convex side, as shown by the researchers' direct simulation Monte Carlo modeling. The gas movement causes the light mill to rotate with the concave side moving forward, due to Newton's third law. This monocolored design promotes the fabrication of micrometer- or nanometer-scaled light mills, as it is difficult to pattern materials of distinct optical properties within a very narrow, three-dimensional space. [13] [14]

Horizontal vane light mill

The thermal creep from the hot side of a vane to the cold side has been demonstrated in a mill with horizontal vanes that have a two-tone surface with a black half and a white half. This design is called a Hettner radiometer. This radiometer's angular speed was found to be limited by the behavior of the drag force due to the gas in the vessel more than by the behavior of the thermal creep force. This design does not experience the Einstein effect because the faces are parallel to the temperature gradient. [15]

Nanoscale light mill

In 2010 researchers at the University of California, Berkeley succeeded in building a nanoscale light mill that works on an entirely different principle to the Crookes radiometer. A gold light mill, only 100 nanometers in diameter, was built and illuminated by laser light that had been tuned. The possibility of doing this had been suggested by the Princeton physicist Richard Beth in 1936. The torque was greatly enhanced by the resonant coupling of the incident light to plasmonic waves in the gold structure. [16]

See also

Related Research Articles

<span class="mw-page-title-main">Light</span> Electromagnetic radiation humans can see

Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 terahertz, between the infrared and the ultraviolet.

<span class="mw-page-title-main">Vacuum</span> Space that is empty of matter

A vacuum is space devoid of matter. The word is derived from the Latin adjective vacuus meaning "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often discuss ideal test results that would occur in a perfect vacuum, which they sometimes simply call "vacuum" or free space, and use the term partial vacuum to refer to an actual imperfect vacuum as one might have in a laboratory or in space. In engineering and applied physics on the other hand, vacuum refers to any space in which the pressure is considerably lower than atmospheric pressure. The Latin term in vacuo is used to describe an object that is surrounded by a vacuum.

<span class="mw-page-title-main">Thermodynamic temperature</span> Measure of absolute temperature

Thermodynamic temperature is a quantity defined in thermodynamics as distinct from kinetic theory or statistical mechanics.

<span class="mw-page-title-main">Radiation pressure</span> Pressure exerted upon any surface exposed to electromagnetic radiation

Radiation pressure is mechanical pressure exerted upon a surface due to the exchange of momentum between the object and the electromagnetic field. This includes the momentum of light or electromagnetic radiation of any wavelength that is absorbed, reflected, or otherwise emitted by matter on any scale. The associated force is called the radiation pressure force, or sometimes just the force of light.

<span class="mw-page-title-main">Incandescent light bulb</span> Electric light bulb with a resistively heated wire filament

An incandescent light bulb, incandescent lamp or incandescent light globe is an electric light with a filament that is heated until it glows. The filament is enclosed in a glass bulb that is either evacuated or filled with inert gas to protect the filament from oxidation. Electric current is supplied to the filament by terminals or wires embedded in the glass. A bulb socket provides mechanical support and electrical connections.

<span class="mw-page-title-main">Interstellar medium</span> Matter and radiation in the space between the star systems in a galaxy

In astronomy, the interstellar medium (ISM) is the matter and radiation that exist in the space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, as well as dust and cosmic rays. It fills interstellar space and blends smoothly into the surrounding intergalactic space. The energy that occupies the same volume, in the form of electromagnetic radiation, is the interstellar radiation field. Although the density of atoms in the ISM is usually far below that in the best laboratory vacuums, the mean free path between collisions is short compared to typical interstellar lengths, so on these scales the ISM behaves as a gas (more precisely, as a plasma: it is everywhere at least slightly ionized), responding to pressure forces, and not as a collection of non-interacting particles.

<span class="mw-page-title-main">Spectral line</span> A distinctive narrow spectral feature of chemical species

A spectral line is a weaker or stronger region in an otherwise uniform and continuous spectrum. It may result from emission or absorption of light in a narrow frequency range, compared with the nearby frequencies. Spectral lines are often used to identify atoms and molecules. These "fingerprints" can be compared to the previously collected ones of atoms and molecules, and are thus used to identify the atomic and molecular components of stars and planets, which would otherwise be impossible.

<span class="mw-page-title-main">Heat transfer</span> Transport of thermal energy in physical systems

Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy (heat) between physical systems. Heat transfer is classified into various mechanisms, such as thermal conduction, thermal convection, thermal radiation, and transfer of energy by phase changes. Engineers also consider the transfer of mass of differing chemical species, either cold or hot, to achieve heat transfer. While these mechanisms have distinct characteristics, they often occur simultaneously in the same system.

<span class="mw-page-title-main">Thermal radiation</span> Electromagnetic radiation generated by the thermal motion of particles

Thermal radiation is electromagnetic radiation generated by the thermal motion of particles in matter. Thermal radiation is generated when heat from the movement of charges in the material is converted to electromagnetic radiation. All matter with a temperature greater than absolute zero emits thermal radiation. At room temperature, most of the emission is in the infrared (IR) spectrum. Particle motion results in charge-acceleration or dipole oscillation which produces electromagnetic radiation.

<span class="mw-page-title-main">Spark gap</span> Two conducting electrodes separated in order to allow an electric spark to pass between

A spark gap consists of an arrangement of two conducting electrodes separated by a gap usually filled with a gas such as air, designed to allow an electric spark to pass between the conductors. When the potential difference between the conductors exceeds the breakdown voltage of the gas within the gap, a spark forms, ionizing the gas and drastically reducing its electrical resistance. An electric current then flows until the path of ionized gas is broken or the current reduces below a minimum value called the "holding current". This usually happens when the voltage drops, but in some cases occurs when the heated gas rises, stretching out and then breaking the filament of ionized gas. Usually, the action of ionizing the gas is violent and disruptive, often leading to sound, light, and heat.

<span class="mw-page-title-main">Radiometer</span> Device for measuring the radiant flux (power) of electromagnetic radiation

A radiometer or roentgenometer is a device for measuring the radiant flux (power) of electromagnetic radiation. Generally, a radiometer is an infrared radiation detector or an ultraviolet detector. Microwave radiometers operate in the microwave wavelengths.

<span class="mw-page-title-main">X-ray tube</span> Vacuum tube that converts electrical input power into X-rays

An X-ray tube is a vacuum tube that converts electrical input power into X-rays. The availability of this controllable source of X-rays created the field of radiography, the imaging of partly opaque objects with penetrating radiation. In contrast to other sources of ionizing radiation, X-rays are only produced as long as the X-ray tube is energized. X-ray tubes are also used in CT scanners, airport luggage scanners, X-ray crystallography, material and structure analysis, and for industrial inspection.

<span class="mw-page-title-main">Photodetector</span> Sensors of light or other electromagnetic energy

Photodetectors, also called photosensors, are sensors of light or other electromagnetic radiation. There are a wide variety of photodetectors which may be classified by mechanism of detection, such as photoelectric or photochemical effects, or by various performance metrics, such as spectral response. Semiconductor-based photodetectors typically use a p–n junction that converts photons into charge. The absorbed photons make electron–hole pairs in the depletion region. Photodiodes and photo transistors are a few examples of photo detectors. Solar cells convert some of the light energy absorbed into electrical energy.

<span class="mw-page-title-main">Crookes tube</span> Early type of cathode ray tube

A Crookes tube is an early experimental electrical discharge tube, with partial vacuum, invented by English physicist William Crookes and others around 1869-1875, in which cathode rays, streams of electrons, were discovered.

<span class="mw-page-title-main">Deuterium arc lamp</span> Type of gas-discharge light source that emits ultraviolet light

A deuterium arc lamp is a low-pressure gas-discharge light source often used in spectroscopy when a continuous spectrum in the ultraviolet region is needed.

Photophoresis denotes the phenomenon that small particles suspended in gas (aerosols) or liquids (hydrocolloids) start to migrate when illuminated by a sufficiently intense beam of light. The existence of this phenomenon is owed to a non-uniform distribution of temperature of an illuminated particle in a fluid medium. Separately from photophoresis, in a fluid mixture of different kinds of particles, the migration of some kinds of particles may be due to differences in their absorptions of thermal radiation and other thermal effects collectively known as thermophoresis. In laser photophoresis, particles migrate once they have a refractive index different from their surrounding medium. The migration of particles is usually possible when the laser is slightly or not focused. A particle with a higher refractive index compared to its surrounding molecule moves away from the light source due to momentum transfer from absorbed and scattered light photons. This is referred to as a radiation pressure force. This force depends on light intensity and particle size but has nothing to do with the surrounding medium. Just like in Crookes radiometer, light can heat up one side and gas molecules bounce from that surface with greater velocity, hence push the particle to the other side. Under certain conditions, with particles of diameter comparable to the wavelength of light, the phenomenon of a negative indirect photophoresis occurs, due to the unequal heat generation on the laser irradiation between the back and front sides of particles, this produces a temperature gradient in the medium around the particle such that molecules at the far side of the particle from the light source may get to heat up more, causing the particle to move towards the light source.

<span class="mw-page-title-main">Infrared heater</span> Device designed to create radiative heat

An infrared heater or heat lamp is a heating appliance containing a high-temperature emitter that transfers energy to a cooler object through electromagnetic radiation. Depending on the temperature of the emitter, the wavelength of the peak of the infrared radiation ranges from 750 nm to 1 mm. No contact or medium between the emitter and cool object is needed for the energy transfer. Infrared heaters can be operated in vacuum or atmosphere.

<span class="mw-page-title-main">Thermal transpiration</span>

Thermal transpiration refers to the thermal force on a gas due to a temperature difference. Thermal transpiration causes a flow of gas in the absence of any other pressure difference, and is able to maintain a certain pressure difference called thermomolecular pressure difference in a steady state. The effect is strongest when the mean free path of the gas molecules is comparable to the dimensions of the gas container.

References

  1. Worrall, J. (1982). "The pressure of light: The strange case of the vacillating 'crucial experiment'". Studies in History and Philosophy of Science. 13 (2): 133–171. Bibcode:1982SHPSA..13..133W. doi:10.1016/0039-3681(82)90023-1.
  2. The Electrical Engineer. Biggs & Company. 1888. p. 53.
  3. 1 2 3 Gibbs, Philip (1996). "How does a light-mill work?". math.ucr.edu/home/baez/physics/index.html. Usenet Physics FAQ. Retrieved 8 August 2014.
  4. "Light-Mills discussion; The n-Category Cafe" . Retrieved 29 April 2017.
  5. Ohio, The University of Akron. "the radiometer using inquiry to teach energy conversions". The University of Akron, Ohio. Retrieved 10 October 2021.
  6. 1 2 3 Kraftmakher, Yaakov (29 August 2014). Experiments and demonstrations in physics (2 ed.). Singapore: World Scientific. p. 179. ISBN   9789814434904.
  7. Crookes, William (1 January 1874). "On Attraction and Repulsion Resulting from Radiation". Philosophical Transactions of the Royal Society of London. 164: 501–527. doi: 10.1098/rstl.1874.0015 . S2CID   110306977..
  8. 1 2 Lebedew, Peter (1901). "Untersuchungen über die Druckkräfte des Lichtes". Annalen der Physik. 311 (11): 433–458. Bibcode:1901AnP...311..433L. doi:10.1002/andp.19013111102.
  9. Brush, S. G.; Everitt, C. W. F. (1969). "Maxwell, Osborne Reynolds, and the Radiometer". Historical Studies in the Physical Sciences. 1: 105–125. doi:10.2307/27757296. JSTOR   27757296.
  10. Calaprice, Alice; et al. (27 October 2015). An Einstein encyclopedia. Princeton University Press. p. 190. ISBN   978-0691141749.
  11. Reynolds, Osborne (1 January 1879). "On certain dimensional properties of matter in the gaseous state …". Philosophical Transactions of the Royal Society of London. 170: 727–845. doi:10.1098/rstl.1879.0078.; Part 2.
  12. Maxwell, J. Clerk (1 January 1879). "On stresses in rarefied gases arising from inequalities of temperature". Philosophical Transactions of the Royal Society of London. 170: 231–256. doi:10.1098/rstl.1879.0067.
  13. Han, Li-Hsin; Shaomin Wu; J. Christopher Condit; Nate J. Kemp; Thomas E. Milner; Marc D. Feldman; Shaochen Chen (2010). "Light-Powered Micromotor Driven by Geometry-Assisted, Asymmetric Photon-heating and Subsequent Gas Convection". Applied Physics Letters. 96 (21): 213509(1–3). Bibcode:2010ApPhL..96u3509H. doi:10.1063/1.3431741. Archived from the original on 22 July 2011.
  14. Han, Li-Hsin; Shaomin Wu; J. Christopher Condit; Nate J. Kemp; Thomas E. Milner; Marc D. Feldman; Shaochen Chen (2011). "Light-Powered Micromotor: Design, Fabrication, and Mathematical Modeling". Journal of Microelectromechanical Systems. 20 (2): 487–496. doi:10.1109/JMEMS.2011.2105249. S2CID   11055498.
  15. Wolfe, David; Larraza, Andres (2016). Alejandro Garcia. "A Horizontal Vane Radiometer: Experiment, Theory, and Simulation". Physics of Fluids. 28 (3): 037103. arXiv: 1512.02590 . Bibcode:2016PhFl...28c7103W. doi:10.1063/1.4943543. S2CID   119235032.
  16. Yarris, Lynn. "Nano-sized light mill drives micro-sized disk". Phys.org . Retrieved 6 July 2010.
General information
Patents