Cut locus

Last updated
Geodesics on an ellipsoid (blue) from a single point (for flattening f =
.mw-parser-output .frac{white-space:nowrap}.mw-parser-output .frac .num,.mw-parser-output .frac .den{font-size:80%;line-height:0;vertical-align:super}.mw-parser-output .frac .den{vertical-align:sub}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}
1/10, latitude ph1 = -30deg) form a segment of a circle of latitude; geodesic circles are shown in green and the cut locus in red. Geodesics and geodesic circles on an oblate ellipsoid.svg
Geodesics on an ellipsoid (blue) from a single point (for flattening f = 110, latitude φ1 = −30°) form a segment of a circle of latitude; geodesic circles are shown in green and the cut locus in red.

In differential geometry, the cut locus of a point p on a manifold is the closure of the set of all other points on the manifold that are connected to p by two or more distinct shortest geodesics. [1] More generally, the cut locus of a closed set X on the manifold is the closure of the set of all other points on the manifold connected to X by two or more distinct shortest geodesics.

Contents

Examples

Cut locus C(P) of a point P on the surface of a cylinder. A point Q in the cut locus is shown with two distinct shortest paths
g
1
,
g
2
{\displaystyle \gamma _{1},\gamma _{2}}
connecting it to P. Zylinder pfad.svg
Cut locus C(P) of a point P on the surface of a cylinder. A point Q in the cut locus is shown with two distinct shortest paths connecting it to P.

In the Euclidean plane, a point p has an empty cut locus, because every other point is connected to p by a unique geodesic (the line segment between the points).

On the sphere, the cut locus of a point consists of the single antipodal point diametrically opposite to it.

On an infinitely long cylinder, the cut locus of a point consists of the line opposite the point.

Let X be the boundary of a simple polygon in the Euclidean plane. Then the cut locus of X in the interior of the polygon is the polygon's medial axis. Points on the medial axis are centers of disks that touch the polygon boundary at two or more points, corresponding to two or more shortest paths to the disk center.

Let x be a point on the surface of a convex polyhedron P. Then the cut locus of x on the polyhedron's surface is known as the ridge tree of P with respect to x. This ridge tree has the property that cutting the surface along its edges unfolds P to a simple planar polygon. This polygon can be viewed as a net for the polyhedron.

Formal definition

Fix a point in a complete Riemannian manifold , and consider the tangent space . It is a standard result that for sufficiently small in , the curve defined by the Riemannian exponential map, for belonging to the interval is a minimizing geodesic, and is the unique minimizing geodesic connecting the two endpoints. Here denotes the exponential map from . The cut locus of in the tangent space is defined to be the set of all vectors in such that is a minimizing geodesic for but fails to be minimizing for for every . Thus the cut locus in the tangent space is the boundary of the set [2] where denotes the length metric of , and is the Euclidean norm of . The cut locus of in is defined to be image of the cut locus of in the tangent space under the exponential map at . Thus, we may interpret the cut locus of in as the points in the manifold where the geodesics starting at stop being minimizing.

The least distance from p to the cut locus is the injectivity radius at p. On the open ball of this radius, the exponential map at p is a diffeomorphism from the tangent space to the manifold, and this is the largest such radius. The global injectivity radius is defined to be the infimum of the injectivity radius at p, over all points of the manifold.

Characterization

Suppose is in the cut locus of in . A standard result [3] is that either (1) there is more than one minimizing geodesic joining to , or (2) and are conjugate along some geodesic which joins them. It is possible for both (1) and (2) to hold.

Applications

The significance of the cut locus is that the distance function from a point is smooth, except on the cut locus of and itself. In particular, it makes sense to take the gradient and Hessian of the distance function away from the cut locus and . This idea is used in the local Laplacian comparison theorem and the local Hessian comparison theorem. These are used in the proof of the local version of the Toponogov theorem, and many other important theorems in Riemannian geometry.

For the metric space of surface distances on a convex polyhedron, cutting the polyhedron along the cut locus produces a shape that can be unfolded flat into a plane, the source unfolding. [4] The unfolding process can be performed continuously, as a blooming of the polyhedron. [5] Analogous methods of cutting along the cut locus can be used to unfold higher-dimensional convex polyhedra as well. [6]

Cut locus of a subset

One can similarly define the cut locus of a submanifold of the Riemannian manifold, in terms of its normal exponential map.

Related Research Articles

<span class="mw-page-title-main">Polyhedron</span> 3D shape with flat faces, straight edges and sharp corners

In geometry, a polyhedron is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices.

<span class="mw-page-title-main">Geodesic</span> Straight path on a curved surface or a Riemannian manifold

In geometry, a geodesic is a curve representing in some sense the shortest path (arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. It is a generalization of the notion of a "straight line".

<span class="mw-page-title-main">Gauss–Bonnet theorem</span> Theorem in differential geometry

In the mathematical field of differential geometry, the Gauss–Bonnet theorem is a fundamental formula which links the curvature of a surface to its underlying topology.

In differential geometry, a Riemannian manifold (or Riemannian space) (M, g), so called after the German mathematician Bernhard Riemann, is a real, smooth manifold M equipped with a smoothly-varying positive-definite inner product gp on the tangent space TpM at each point p.

<span class="mw-page-title-main">Exponential map (Riemannian geometry)</span>

In Riemannian geometry, an exponential map is a map from a subset of a tangent space TpM of a Riemannian manifold M to M itself. The (pseudo) Riemannian metric determines a canonical affine connection, and the exponential map of the (pseudo) Riemannian manifold is given by the exponential map of this connection.

In Riemannian geometry, the sectional curvature is one of the ways to describe the curvature of Riemannian manifolds. The sectional curvature Kp) depends on a two-dimensional linear subspace σp of the tangent space at a point p of the manifold. It can be defined geometrically as the Gaussian curvature of the surface which has the plane σp as a tangent plane at p, obtained from geodesics which start at p in the directions of σp. The sectional curvature is a real-valued function on the 2-Grassmannian bundle over the manifold.

This is a glossary of some terms used in Riemannian geometry and metric geometry — it doesn't cover the terminology of differential topology.

Hopf–Rinow theorem is a set of statements about the geodesic completeness of Riemannian manifolds. It is named after Heinz Hopf and his student Willi Rinow, who published it in 1931. Stefan Cohn-Vossen extended part of the Hopf–Rinow theorem to the context of certain types of metric spaces.

Myers's theorem, also known as the Bonnet–Myers theorem, is a celebrated, fundamental theorem in the mathematical field of Riemannian geometry. It was discovered by Sumner Byron Myers in 1941. It asserts the following:

In mathematics, more particularly in the fields of dynamical systems and geometric topology, an Anosov map on a manifold M is a certain type of mapping, from M to itself, with rather clearly marked local directions of "expansion" and "contraction". Anosov systems are a special case of Axiom A systems.

In mathematics, the vector flow refers to a set of closely related concepts of the flow determined by a vector field. These appear in a number of different contexts, including differential topology, Riemannian geometry and Lie group theory. These related concepts are explored in a spectrum of articles:

In differential geometry, conjugate points or focal points are, roughly, points that can almost be joined by a 1-parameter family of geodesics. For example, on a sphere, the north-pole and south-pole are connected by any meridian. Another viewpoint is that conjugate points tell when the geodesics fail to be length-minimizing. All geodesics are locally length-minimizing, but not globally. For example on a sphere, any geodesic passing through the north-pole can be extended to reach the south-pole, and hence any geodesic segment connecting the poles is not (uniquely) globally length minimizing. This tells us that any pair of antipodal points on the standard 2-sphere are conjugate points.

In mathematics, a complete manifoldM is a (pseudo-) Riemannian manifold for which, starting at any point p, there are straight paths extending infinitely in all directions.

In differential geometry, normal coordinates at a point p in a differentiable manifold equipped with a symmetric affine connection are a local coordinate system in a neighborhood of p obtained by applying the exponential map to the tangent space at p. In a normal coordinate system, the Christoffel symbols of the connection vanish at the point p, thus often simplifying local calculations. In normal coordinates associated to the Levi-Civita connection of a Riemannian manifold, one can additionally arrange that the metric tensor is the Kronecker delta at the point p, and that the first partial derivatives of the metric at p vanish.

In mathematics, the Cartan–Hadamard theorem is a statement in Riemannian geometry concerning the structure of complete Riemannian manifolds of non-positive sectional curvature. The theorem states that the universal cover of such a manifold is diffeomorphic to a Euclidean space via the exponential map at any point. It was first proved by Hans Carl Friedrich von Mangoldt for surfaces in 1881, and independently by Jacques Hadamard in 1898. Élie Cartan generalized the theorem to Riemannian manifolds in 1928. The theorem was further generalized to a wide class of metric spaces by Mikhail Gromov in 1987; detailed proofs were published by Ballmann (1990) for metric spaces of non-positive curvature and by Alexander & Bishop (1990) for general locally convex metric spaces.

The Alexandrov uniqueness theorem is a rigidity theorem in mathematics, describing three-dimensional convex polyhedra in terms of the distances between points on their surfaces. It implies that convex polyhedra with distinct shapes from each other also have distinct metric spaces of surface distances, and it characterizes the metric spaces that come from the surface distances on polyhedra. It is named after Soviet mathematician Aleksandr Danilovich Aleksandrov, who published it in the 1940s.

<span class="mw-page-title-main">Exponential map (Lie theory)</span> Map from a Lie algebra to its Lie group

In the theory of Lie groups, the exponential map is a map from the Lie algebra of a Lie group to the group, which allows one to recapture the local group structure from the Lie algebra. The existence of the exponential map is one of the primary reasons that Lie algebras are a useful tool for studying Lie groups.

In mathematics, the Cartan–Ambrose–Hicks theorem is a theorem of Riemannian geometry, according to which the Riemannian metric is locally determined by the Riemann curvature tensor, or in other words, behavior of the curvature tensor under parallel translation determines the metric.

In computational geometry, the star unfolding of a convex polyhedron is a net obtained by cutting the polyhedron along geodesics through its faces. It has also been called the inward layout of the polyhedron, or the Alexandrov unfolding after Aleksandr Danilovich Aleksandrov, who first considered it.

In computational geometry, the source unfolding of a convex polyhedron is a net obtained by cutting the polyhedron along the cut locus of a point on the surface of the polyhedron. The cut locus of a point consists of all points on the surface that have two or more shortest geodesics to . For every convex polyhedron, and every choice of the point on its surface, cutting the polyhedron on the cut locus will produce a result that can be unfolded into a flat plane, producing the source unfolding. The resulting net may, however, cut across some of the faces of the polyhedron rather than only cutting along its edges.

References

  1. "Cut locus". Encyclopedia of Mathematics. Retrieved February 18, 2024.
  2. Cheeger, J., Ebin, D. G., & Ebin, D. G. (1975). Comparison theorems in Riemannian geometry (Vol. 9). Amsterdam: North-Holland publishing company, p. 94.
  3. Petersen, Peter (1998). "Chapter 5, Lemma 8.2". Riemannian Geometry (1st ed.). Springer-Verlag.
  4. Demaine, Erik; O'Rourke, Joseph (2007). "24.1.1 Source unfolding". Geometric Folding Algorithms. Cambridge University Press. pp. 359–362. ISBN   978-0-521-71522-5.
  5. Demaine, Erik D.; Demaine, Martin L.; Hart, Vi; Iacono, John; Langerman, Stefan; O'Rourke, Joseph (2011). "Continuous blooming of convex polyhedra". Graphs and Combinatorics . 27 (3): 363–376. CiteSeerX   10.1.1.150.9715 . doi:10.1007/s00373-011-1024-3. MR   2787423. S2CID   82408.
  6. Miller, Ezra; Pak, Igor (2008). "Metric combinatorics of convex polyhedra: Cut loci and nonoverlapping unfoldings". Discrete & Computational Geometry . 39 (1–3): 339–388. doi: 10.1007/s00454-008-9052-3 . MR   2383765.