Cyanophycin

Last updated
Two subunits of cyanophycin with alternating directionality. Cyanophycin.svg
Two subunits of cyanophycin with alternating directionality.

Cyanophycin, also known as CGP (cyanophycin granule polypeptide) or multi-L-arginyl-poly (L-aspartic acid), is a non-protein, non-ribosomally produced amino acid polymer composed of an aspartic acid backbone and arginine side groups.

Cyanophycin was first detected in 1887 by the Italian botanist Antonino Borzì and can be found in most cyanobacteria and a few heterotrophic bacteria such as Acinetobacter sp. [1] Cyanophycin is largely insoluble under physiological conditions and is accumulated in the form of granules in the cytoplasm during phosphate or sulfur starvation, generally in the early and mid-stationary phase. It is used as a nitrogen- and possibly carbon-storage compound and also serves as a dynamic buffer for fixed nitrogen in cyanobacterial heterocysts. Nitrogen and carbon are mobilized from cyanophycin by intracellular cyanophycinase in the form of aspartate-arginine dipeptides.

Cyanophycin is synthesized from arginine and aspartate in an ATP-dependent reaction catalyzed by a single enzyme, cyanophycin synthetase. [2] Cyanophycin is of potential interest to biotechnology as a source of polyaspartic acid. Due to its unusual polyamphoteric character, cyanophycin is soluble in water under acidic (0.1 M HCl) and alkaline conditions. Heterologous expression of cyanophycin synthetase allows production of cyanophycin in a number of biotechnologically relevant bacteria such as Escherichia coli and Corynebacterium glutamicum . [3]

Since insoluble forms of CGP are easily purified, most studies have overlooked the synthesis of CGP that is soluble at a neutral pH. To compare the two, insoluble CGP can be solubilized by only weak acids while soluble CGP can be separated with the process of precipitation by using acetone or ethanol. [4] In 2014, an experiment by Steinbüchel and Wiefel determined that the amount of lysine residue can regulate the solubility of cyanophycin, with higher levels of lysine negatively correlating to the temperature needed to make the polymer soluble with aqueous solvents. [4] It was concluded that insoluble and soluble CGP are not distinct polymers, since they originate from the same polymer mixture, but are instead classified as mixes of cyanophycin mixtures with varying concentrations of lysine residues.

The ability of lysine to partially replace the arginine side chain encouraged research of CGP variants with amino acids such as ornithine and citrulline. Lysine, ornithine and citrulline all have an affinity for cyanophycin synthase (L-aspartate-adding) enzyme CphA. [4] Wiefel, Bröker and Steinbüchel conducted an experiment demonstrating that citrulline-rich cyanophycin can be produced through the introduction of a citrulline-producing strain. [5] It was also determined that insoluble CGP only exhibited minuscule concentrations of citrulline while soluble CGP was able to produce a high concentration of citrulline. This trend is also similar for ornithine.

Related Research Articles

<span class="mw-page-title-main">Amino acid</span> Organic compounds containing amine and carboxylic groups

Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the 22 α-amino acids incorporated into proteins. Only these 22 appear in the genetic code of life.

The urea cycle (also known as the ornithine cycle) is a cycle of biochemical reactions that produces urea (NH2)2CO from ammonia (NH3). Animals that use this cycle, mainly amphibians and mammals, are called ureotelic.

<span class="mw-page-title-main">Arginine</span> Amino acid

Arginine is the amino acid with the formula (H2N)(HN)CN(H)(CH2)3CH(NH2)CO2H. The molecule features a guanidino group appended to a standard amino acid framework. At physiological pH, the carboxylic acid is deprotonated (−CO2) and both the amino and guanidino groups are protonated, resulting in a cation. Only the l-arginine (symbol Arg or R) enantiomer is found naturally. Arg residues are common components of proteins. It is encoded by the codons CGU, CGC, CGA, CGG, AGA, and AGG. The guanidine group in arginine is the precursor for the biosynthesis of nitric oxide. Like all amino acids, it is a white, water-soluble solid.

<span class="mw-page-title-main">Ornithine</span> Chemical compound

Ornithine is a non-proteinogenic α-amino acid that plays a role in the urea cycle. Ornithine is abnormally accumulated in the body in ornithine transcarbamylase deficiency. The radical is ornithyl.

<span class="mw-page-title-main">Carbamoyl phosphate</span> Chemical compound

Carbamoyl phosphate is an anion of biochemical significance. In land-dwelling animals, it is an intermediary metabolite in nitrogen disposal through the urea cycle and the synthesis of pyrimidines. Its enzymatic counterpart, carbamoyl phosphate synthetase I, interacts with a class of molecules called sirtuins, NAD dependent protein deacetylases, and ATP to form carbamoyl phosphate. CP then enters the urea cycle in which it reacts with ornithine to form citrulline.

In molecular biology, biosynthesis is a multi-step, enzyme-catalyzed process where substrates are converted into more complex products in living organisms. In biosynthesis, simple compounds are modified, converted into other compounds, or joined to form macromolecules. This process often consists of metabolic pathways. Some of these biosynthetic pathways are located within a single cellular organelle, while others involve enzymes that are located within multiple cellular organelles. Examples of these biosynthetic pathways include the production of lipid membrane components and nucleotides. Biosynthesis is usually synonymous with anabolism.

<span class="mw-page-title-main">Mitochondrial matrix</span> Space within the inner membrane of the mitochondrion

In the mitochondrion, the matrix is the space within the inner membrane. The word "matrix" stems from the fact that this space is viscous, compared to the relatively aqueous cytoplasm. The mitochondrial matrix contains the mitochondrial DNA, ribosomes, soluble enzymes, small organic molecules, nucleotide cofactors, and inorganic ions.[1] The enzymes in the matrix facilitate reactions responsible for the production of ATP, such as the citric acid cycle, oxidative phosphorylation, oxidation of pyruvate, and the beta oxidation of fatty acids.

<span class="mw-page-title-main">Argininosuccinate synthase</span> Enzyme

Argininosuccinate synthase or synthetase is an enzyme that catalyzes the synthesis of argininosuccinate from citrulline and aspartate. In humans, argininosuccinate synthase is encoded by the ASS gene located on chromosome 9.

<span class="mw-page-title-main">Argininosuccinate lyase</span> Mammalian protein found in Homo sapiens

The enzyme argininosuccinate lyase (EC 4.3.2.1, ASL, argininosuccinase; systematic name 2-(N ω-L-arginino)succinate arginine-lyase (fumarate-forming)) catalyzes the reversible breakdown of argininosuccinate:

Phytotoxins are substances that are poisonous or toxic to the growth of plants. Phytotoxic substances may result from human activity, as with herbicides, or they may be produced by plants, by microorganisms, or by naturally occurring chemical reactions.

<span class="mw-page-title-main">Amino acid synthesis</span> The set of biochemical processes by which amino acids are produced

Amino acid synthesis is the set of biochemical processes by which the amino acids are produced. The substrates for these processes are various compounds in the organism's diet or growth media. Not all organisms are able to synthesize all amino acids. For example, humans can synthesize 11 of the 20 standard amino acids. These 11 are called the non-essential amino acids).

<span class="mw-page-title-main">Arginine decarboxylase</span>

The enzyme Acid-Induced Arginine Decarboxylase (AdiA), also commonly referred to as arginine decarboxylase, catalyzes the conversion of L-arginine into agmatine and carbon dioxide. The process consumes a proton in the decarboxylation and employs a pyridoxal-5'-phosphate (PLP) cofactor, similar to other enzymes involved in amino acid metabolism, such as ornithine decarboxylase and glutamine decarboxylase. It is found in bacteria and virus, though most research has so far focused on forms of the enzyme in bacteria. During the AdiA catalyzed decarboxylation of arginine, the necessary proton is consumed from the cell cytoplasm which helps to prevent the over-accumulation of protons inside the cell and serves to increase the intracellular pH. Arginine decarboxylase is part of an enzymatic system in Escherichia coli, Salmonella Typhimurium, and methane-producing bacteria Methanococcus jannaschii that makes these organisms acid resistant and allows them to survive under highly acidic medium.

<span class="mw-page-title-main">Arginine—tRNA ligase</span>

In enzymology, an arginine—tRNA ligase is an enzyme that catalyzes the chemical reaction

In enzymology, an arginine deiminase (EC 3.5.3.6) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Aldehyde dehydrogenase 18 family, member A1</span> Protein-coding gene in the species Homo sapiens

Delta-1-pyrroline-5-carboxylate synthetase (P5CS) is an enzyme that in humans is encoded by the ALDH18A1 gene. This gene is a member of the aldehyde dehydrogenase family and encodes a bifunctional ATP- and NADPH-dependent mitochondrial enzyme with both gamma-glutamyl kinase and gamma-glutamyl phosphate reductase activities. The encoded protein catalyzes the reduction of glutamate to delta1-pyrroline-5-carboxylate, a critical step in the de novo biosynthesis of proline, ornithine and arginine. Mutations in this gene lead to hyperammonemia, hypoornithinemia, hypocitrullinemia, hypoargininemia and hypoprolinemia and may be associated with neurodegeneration, cataracts and connective tissue diseases. Alternatively spliced transcript variants, encoding different isoforms, have been described for this gene. As reported by Bruno Reversade and colleagues, ALDH18A1 deficiency or dominant-negative mutations in P5CS in humans causes a progeroid disease known as De Barsy Syndrome.

<span class="mw-page-title-main">Canaline</span> Chemical compound

l-Canaline ) is a non-proteinogenic amino acid. The compound is found in legumes that contain canavanine, from which it is produced by the action of arginase. The most common-used source for this amino acid is the jack bean, Canavalia ensiformis.

The bacterial cell wall provides strength and rigidity to counteract internal osmotic pressure, and protection against the environment. The peptidoglycan layer gives the cell wall its strength, and helps maintain the overall shape of the cell. The basic peptidoglycan structure of both Gram-positive and Gram-negative bacteria comprises a sheet of glycan chains connected by short cross-linking polypeptides. Biosynthesis of peptidoglycan is a multi-step process comprising three main stages:

  1. formation of UDP-N-acetylmuramic acid (UDPMurNAc) from N-acetylglucosamine (GlcNAc).
  2. addition of a short polypeptide chain to the UDPMurNAc.
  3. addition of a second GlcNAc to the disaccharide-pentapeptide building block and transport of this unit through the cytoplasmic membrane and incorporation into the growing peptidoglycan layer.
<span class="mw-page-title-main">Cyanophycinase</span> Class of enzymes

Cyanophycinase (EC 3.4.15.6, cyanophycin degrading enzyme, beta-Asp-Arg hydrolysing enzyme, CGPase, CphB, CphE, cyanophycin granule polypeptidase, extracellular CGPase) is an enzyme. It catalyses the following chemical reaction

Cyanophycin synthase (L-aspartate-adding) is an enzyme with systematic name cyanophycin:L-aspartate ligase (ADP-forming). This enzyme catalyses the following chemical reaction

Cyanophycin synthase (L-arginine-adding) is an enzyme with systematic name cyanophycin:L-arginine ligase (ADP-forming). This enzyme catalyses the following chemical reaction:

References

  1. Krehenbrink M, Oppermann-Sanio FB, Steinbüchel A (May 2002). "Evaluation of non-cyanobacterial genome sequences for occurrence of genes encoding proteins homologous to cyanophycin synthetase and cloning of an active cyanophycin synthetase from Acinetobacter sp. strain DSM 587". Archives of Microbiology. 177 (5): 371–80. doi:10.1007/s00203-001-0396-9. PMID   11976746. S2CID   2072408.
  2. Ziegler K, Diener A, Herpin C, Richter R, Deutzmann R, Lockau W (May 1998). "Molecular characterization of cyanophycin synthetase, the enzyme catalyzing the biosynthesis of the cyanobacterial reserve material multi-L-arginyl-poly-L-aspartate (cyanophycin)". European Journal of Biochemistry. 254 (1): 154–9. doi: 10.1046/j.1432-1327.1998.2540154.x . PMID   9652408.
  3. Oppermann-Sanio FB, Steinbüchel A (January 2002). "Occurrence, functions and biosynthesis of polyamides in microorganisms and biotechnological production". Die Naturwissenschaften. 89 (1): 11–22. Bibcode:2002NW.....89...11O. doi:10.1007/s00114-001-0280-0. PMID   12008968. S2CID   21405793.
  4. 1 2 3 Wiefel L, Steinbüchel A (February 2014). "Solubility behavior of cyanophycin depending on lysine content". Applied and Environmental Microbiology. 80 (3): 1091–6. doi:10.1128/AEM.03159-13. PMC   3911199 . PMID   24271185.
  5. Wiefel L, Bröker A, Steinbüchel A (June 2011). "Synthesis of a citrulline-rich cyanophycin by use of Pseudomonas putida ATCC 4359". Applied Microbiology and Biotechnology. 90 (5): 1755–62. doi:10.1007/s00253-011-3224-4. PMID   21455592. S2CID   21008673.