Cyanophycinase

Last updated
Cyanophycinase
Asymmetric Unit of Cyanophycinase.png
Asymmetric Unit of Cyanophycinase. PDB: 3EN0
Cyanophycinase consists of three identical chains.
Identifiers
EC no. 3.4.15.6
CAS no. 131554-16-0
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins
Biological assembly of cyanophycinase determined from the organism Synechocystis sp. PCC6803 Biological Assembly of Cyanophycinase.png
Biological assembly of cyanophycinase determined from the organism Synechocystis sp. PCC6803
The catalytic triad of Cyanophycinase is Ser 132, His 174, and Glu 201. Other conserved residues which form a pocket around the serine include: Gln101, Asp172, Gln173, Arg178, Arg180 and Arg183 The active site and catalytic triad of Cyanophycinase.png
The catalytic triad of Cyanophycinase is Ser 132, His 174, and Glu 201. Other conserved residues which form a pocket around the serine include: Gln101, Asp172, Gln173, Arg178, Arg180 and Arg183

Cyanophycinase (EC 3.4.15.6, cyanophycin degrading enzyme, beta-Asp-Arg hydrolysing enzyme, CGPase, CphB, CphE, cyanophycin granule polypeptidase, extracellular CGPase) is an enzyme. [1] [2] [3] It catalyses the following chemical reaction

Contents

[L-Asp(4-L-Arg)]n + H2O [L-Asp(4-L-Arg)]n-1 + L-Asp(4-L-Arg)

The enzyme is highly specific for the branched polypeptide cyanophycin. It is similar to Dipeptidase E, another S51 family serine protease.

Structure

The asymmetric unit of cyanophycinase consists of three identical chains, each containing 291 residues. The structure of cyanophycinase was determined from the freshwater cyanobacterium Synechocystis sp. PCC 6803 at 1.5-A resolution, which showed that the structure is dimeric. [4]

Enzyme function

Cyanophycinase is a carboxy terminal specific exopeptidase, meaning it catalyzes the cleavage of the carboxy terminal peptide bond of cyanophycin. It was hypothesized that cyanophycinase was a serine protease due to extreme inhibition of the enzyme when used with known serine protease inhibitors, such as DMSO. Site directed mutagenesis experiments confirmed that the enzyme is a serine protease and suggested that Ser 132 is the primary catalytic residue. Other key residues for specificity include Gln101, Asp172, Gln173, Arg178, Arg180 and Arg183 which form a conserved pocket adjacent to Ser 132. Kinetic characterization of the enzyme demonstrates that the enzyme displays Michaelis–Menten kinetics with a kcat of 16.5 s−1 and a kcat/KM of 7.5 × 106 M−1 s−1. [5]

Connection to nitrogen storage in Cyanobacteria

Cyanophycin is highly resistant to degradation by all conventional proteases, and the only enzyme known to be capable of hydrolyzing it is cyanophycinase. Cyanophycin is a non-ribosomally synthesized peptidyl polymer that is used for nitrogen storage by cyanobacteria and other select eubacteria. Approximately 90% of cyanobacteria are diazotrophic, meaning that they can grow without an external source of fixed nitrogen. Diazotrophic growth [6] was severely impaired in bacteria with a mutated cyanophycinase gene, indicating that the inability to degrade cyanophycin is detrimental for the diazotrophic growth of the cyanobacterium, due to an excess of nitrogen storage.

Related Research Articles

<span class="mw-page-title-main">Proteolysis</span> Breakdown of proteins into smaller polypeptides or amino acids

Proteolysis is the breakdown of proteins into smaller polypeptides or amino acids. Uncatalysed, the hydrolysis of peptide bonds is extremely slow, taking hundreds of years. Proteolysis is typically catalysed by cellular enzymes called proteases, but may also occur by intra-molecular digestion.

<span class="mw-page-title-main">Protease</span> Enzyme that cleaves other proteins into smaller peptides

A protease is an enzyme that catalyzes proteolysis, breaking down proteins into smaller polypeptides or single amino acids, and spurring the formation of new protein products. They do this by cleaving the peptide bonds within proteins by hydrolysis, a reaction where water breaks bonds. Proteases are involved in numerous biological pathways, including digestion of ingested proteins, protein catabolism, and cell signaling.

<span class="mw-page-title-main">Serine protease</span> Class of enzymes

Serine proteases are enzymes that cleave peptide bonds in proteins. Serine serves as the nucleophilic amino acid at the (enzyme's) active site. They are found ubiquitously in both eukaryotes and prokaryotes. Serine proteases fall into two broad categories based on their structure: chymotrypsin-like (trypsin-like) or subtilisin-like.

The kinin–kallikrein system or simply kinin system is a poorly understood hormonal system with limited available research. It consists of blood proteins that play a role in inflammation, blood pressure control, coagulation and pain. Its important mediators bradykinin and kallidin are vasodilators and act on many cell types. Clinical symptoms include marked weakness, tachycardia, fever, leukocytosis and acceleration of ESR.

<span class="mw-page-title-main">Enteropeptidase</span> Class of enzymes

Enteropeptidase is an enzyme produced by cells of the duodenum and is involved in digestion in humans and other animals. Enteropeptidase converts trypsinogen into its active form trypsin, resulting in the subsequent activation of pancreatic digestive enzymes. Absence of enteropeptidase results in intestinal digestion impairment.

<span class="mw-page-title-main">Catalytic triad</span> Set of three coordinated amino acids

A catalytic triad is a set of three coordinated amino acids that can be found in the active site of some enzymes. Catalytic triads are most commonly found in hydrolase and transferase enzymes. An acid-base-nucleophile triad is a common motif for generating a nucleophilic residue for covalent catalysis. The residues form a charge-relay network to polarise and activate the nucleophile, which attacks the substrate, forming a covalent intermediate which is then hydrolysed to release the product and regenerate free enzyme. The nucleophile is most commonly a serine or cysteine amino acid, but occasionally threonine or even selenocysteine. The 3D structure of the enzyme brings together the triad residues in a precise orientation, even though they may be far apart in the sequence.

<span class="mw-page-title-main">Cyanophycin</span>

Cyanophycin, also known as CGP or multi-L-arginyl-poly, is a non-protein, non-ribosomally produced amino acid polymer composed of an aspartic acid backbone and arginine side groups.

<span class="mw-page-title-main">Aspartic protease</span>

Aspartic proteases are a catalytic type of protease enzymes that use an activated water molecule bound to one or more aspartate residues for catalysis of their peptide substrates. In general, they have two highly conserved aspartates in the active site and are optimally active at acidic pH. Nearly all known aspartyl proteases are inhibited by pepstatin.

<span class="mw-page-title-main">TEV protease</span> Highly specific protease

TEV protease is a highly sequence-specific cysteine protease from Tobacco Etch Virus (TEV). It is a member of the PA clan of chymotrypsin-like proteases. Due to its high sequence specificity, TEV protease is frequently used for the controlled cleavage of fusion proteins in vitro and in vivo.

The enzyme glucosylglycerol 3-phosphatase (EC 3.1.3.69) catalyzes the reaction

<span class="mw-page-title-main">KLK6</span> Protein-coding gene in the species Homo sapiens

Kallikrein-6 is a protein that in humans is encoded by the KLK6 gene. Kallikrein-6 is also referred to as neurosin, protease M, hK6, or zyme. It is a 223 amino acid sequence, derived from its 244 original form, which contains a 16 residue presignal and 5 residue activation peptide.

Synechocystis sp. PCC6803 is a strain of unicellular, freshwater cyanobacteria. Synechocystis sp. PCC6803 is capable of both phototrophic growth by oxygenic photosynthesis during light periods and heterotrophic growth by glycolysis and oxidative phosphorylation during dark periods. Gene expression is regulated by a circadian clock and the organism can effectively anticipate transitions between the light and dark phases.

psaA RNA motif

The psaA RNA motif describes a class of RNAs with a common secondary structure. psaA RNAs are exclusively found in locations that presumably correspond to the 5' untranslated regions of operons formed of psaA and psaB genes. For this reason, it was hypothesized that psaA RNAs function as cis-regulatory elements of these genes. The psaAB genes encode proteins that form subunits in the photosystem I structure used for photosynthesis. psaA RNAs have been detected only in cyanobacteria, which is consistent with their association with photosynthesis.

In molecular biology, Cyanobacterial non-coding RNAs are non-coding RNAs which have been identified in species of cyanobacteria. Large scale screens have identified 21 Yfr in the marine cyanobacterium Prochlorococcus and related species such as Synechococcus. These include the Yfr1 and Yfr2 RNAs. In Prochlorococcus and Synechocystis, non-coding RNAs have been shown to regulate gene expression. NsiR4, widely conserved throughout the cyanobacterial phylum, has been shown to be involved in nitrogen assimilation control in Synechocystis sp. PCC 6803 and in the filamentous, nitrogen-fixing Anabaena sp. PCC 7120.

<span class="mw-page-title-main">OmpT</span> Bacterial protein

OmpT is an aspartyl protease found on the outer membrane of Escherichia coli. OmpT is a subtype of the family of omptin proteases, which are found on some gram-negative species of bacteria.

Cyanophycin synthase (L-aspartate-adding) is an enzyme with systematic name cyanophycin:L-aspartate ligase (ADP-forming). This enzyme catalyses the following chemical reaction

Cyanophycin synthase (L-arginine-adding) is an enzyme with systematic name cyanophycin:L-arginine ligase (ADP-forming). This enzyme catalyses the following chemical reaction:

<i>Cyanothece</i> Genus of bacteria

Cyanothece is a genus of unicellular, diazotrophic, oxygenic photosynthesizing cyanobacteria.

<span class="mw-page-title-main">Glutamic protease</span>

Glutamic proteases are a group of proteolytic enzymes containing a glutamic acid residue within the active site. This type of protease was first described in 2004 and became the sixth catalytic type of protease. Members of this group of protease had been previously assumed to be an aspartate protease, but structural determination showed it to belong to a novel protease family. The first structure of this group of protease was scytalidoglutamic peptidase, the active site of which contains a catalytic dyad, glutamic acid (E) and glutamine (Q), which give rise to the name eqolisin. This group of proteases are found primarily in pathogenic fungi affecting plant and human.

<span class="mw-page-title-main">Sedolisin</span>

The sedolisin family of peptidases are a family of serine proteases structurally related to the subtilisin (S8) family. Well-known members of this family include sedolisin ("pseudomonalisin") found in Pseudomonas bacteria, xanthomonalisin ("sedolisin-B"), physarolisin as well as animal tripeptidyl peptidase I. It is also known as sedolysin or serine-carboxyl peptidase. This group of enzymes contains a variation on the catalytic triad: unlike S8 which uses Ser-His-Asp, this group runs on Ser-Glu-Asp, with an additional acidic residue Asp in the oxyanion hole.

References

  1. Obst M, Krug A, Luftmann H, Steinbüchel A (July 2005). "Degradation of cyanophycin by Sedimentibacter hongkongensis strain KI and Citrobacter amalonaticus strain G Isolated from an anaerobic bacterial consortium". Applied and Environmental Microbiology. 71 (7): 3642–52. Bibcode:2005ApEnM..71.3642O. doi:10.1128/aem.71.7.3642-3652.2005. PMC   1169039 . PMID   16000772.
  2. Obst M, Oppermann-Sanio FB, Luftmann H, Steinbüchel A (July 2002). "Isolation of cyanophycin-degrading bacteria, cloning and characterization of an extracellular cyanophycinase gene (cphE) from Pseudomonas anguilliseptica strain BI. The cphE gene from P. anguilliseptica BI encodes a cyanophycinhydrolyzing enzyme". The Journal of Biological Chemistry. 277 (28): 25096–105. doi: 10.1074/jbc.m112267200 . PMID   11986309.
  3. Richter R, Hejazi M, Kraft R, Ziegler K, Lockau W (July 1999). "Cyanophycinase, a peptidase degrading the cyanobacterial reserve material multi-L-arginyl-poly-L-aspartic acid (cyanophycin): molecular cloning of the gene of Synechocystis sp. PCC 6803, expression in Escherichia coli, and biochemical characterization of the purified enzyme". European Journal of Biochemistry. 263 (1): 163–9. doi: 10.1046/j.1432-1327.1999.00479.x . PMID   10429200.
  4. A.M. Law et al. "The structural basis of beta-peptide-specific cleavage by the serine protease cyanophycinase". J. Mol. Biol. (2009) https://doi.org/10.1016/j.jmb.2009.07.001
  5. A.M. Law et al. "The structural basis of beta-peptide-specific cleavage by the serine protease cyanophycinase". J. Mol. Biol. (2009) https://doi.org/10.1016/j.jmb.2009.07.001
  6. Picossi S, Valladares A, Flores E, Herrero A. "Nitrogen-regulated genes for the metabolism of cyanophycin, a bacterial nitrogen reserve polymer: expression and mutational analysis of two cyanophycin synthetase and cyanophycinase gene clusters in heterocyst-forming cyanobacterium Anabaena sp. PCC 7120" J Biol Chem. 2004 Mar 19;279(12):11582-92. doi: https://doi.org/10.1074/jbc.m311518200