Cytoplasmic incompatibility (CI) is a mating incompatibility reported in many arthropod species that is caused by intracellular parasites such as Wolbachia . These bacteria reside in the cytoplasm of the host cells (hence the name cytoplasmic incompatibility) and modify their hosts' sperm in a way that leads to embryo death unless this modification is 'rescued' by the same bacteria in the eggs. CI has been reported in many insect species (including amongst many others mosquitoes, [1] Drosophila fruit flies, [2] [3] flour beetles, [4] snout moths [5] and parasitoid wasps [6] ), as well as in mites [7] and woodlice. [8] Aside from Wolbachia, CI can be induced by the bacteria Cardinium, [9] Rickettsiella , [10] Candidatus Mesenet longicola [11] [12] and Spiroplasma . [13] CI is currently being exploited as a mechanism for Wolbachia-mediated disease control in mosquitoes. [14]
CI was first reported in mosquitoes in the 1930s [15] and then studied extensively in the 1950s by Sabbas Ghelelovitch [16] and especially Hannes Laven. [1] Laven apparently was also the first to recognise the potential for CI-induced speciation [17] and population control. [18] The first mathematical model uncovering the population biological principles of CI was presented in 1959. [19] In 1971, Janice Yen and A. Ralph Barr demonstrated the etiologic relationship between Wolbachia infection and cytoplasmic incompatibility in Culex mosquitos when they found that eggs were killed when the sperm of Wolbachia-infected males fertilized infection-free eggs. [20] The discovery that Wolbachia is very common and widely distributed across arthropods [21] [22] lead to a surge in research on CI in the 1990s and 2000s. Several landmark studies in the 2010s [23] [24] [25] paved the way to use CI-inducing Wolbachia for controlling suppressing diseases such as dengue fever in mosquitoes. [26] [14]
CI occurs when a Wolbachia infected male mates with a female that is infected by another Wolbachia strain (bidirectional CI) or is uninfected (unidirectional CI). Any other combination of un-/infected male/female crosses are compatible. An infected female is compatible with any uninfected male, or with any male infected with the same Wolbachia strain. On the other hand, an uninfected female is only compatible with an uninfected male. In other words, if the male is infected by a CI-inducing strain of Wolbachia that is non-existent in its mate, it is an incompatible cross. [27] Turelli et al. 2018 finds that CI can be resolved by infection of the females with the same strain that is affecting the males, which imposes a population level incentive in favour of CI-inducing strains of Wolbachia. They also find that this propagates the WO phage. [28] Hosts can be cured from Wolbachia infection by antibiotic use.
In diploid organisms CI leads to embryonic mortality. In contrast, CI in haplodiploid hosts can also manifest as embryonic mortality, but may also in some species lead to haploid offspring that then develop into males. The closely related species of the wasp Nasonia show embryonic mortality as well as male development among incompatible crosses. In N. vitripennis, however, the vast majority of the CI embryos are converted into males. [29]
There are two distinguished events that lead to the CI inducing manipulation. The first occurs inside the Wolbachia infected male during spermatogenesis and is called modification. Because Wolbachia are absent from mature sperm and appear to be excluded during the individualization process, the modification must occur before the conclusion of spermatogenesis. [30] The second event, called rescue, takes place inside the fertilized egg where Wolbachia presence prevents CI from occurring. As long as the Wolbachia strains in egg and sperm cells correspond, harmful effects cannot be observed on a cellular level.
A major consequence of CI is the delayed entry into mitosis of the male pronucleus. As a secondary consequence, stemming from this asynchrony, the paternal chromosomes do not properly condense and align on the metaphase plate during the first mitosis. As a consequence, only the maternal chromosome segregate normally, producing haploid embryos. [31] The rescue of CI by infected eggs leads to the restoration of synchrony between the female and the male pronucleus. [31] [32]
The exact mechanisms of how Wolbachia perform modification and rescue are unknown. In Drosophila, the earliest effects caused by CI can already be observed during the sperm chromatin remodeling of the paternal chromosomes. [33] However, it was also observed that in other host species, the defects caused by CI only occur much later in development. [34]
CI is a manipulative phenotype that can lead to the rapid spread of the bacteria inducing it. CI results in the death of uninfected offspring and therefore the infected offspring benefit from reduced competition within the population. When the CI-inducing bacteria are rare in the population, there will be only few incompatible matings and selection (or drive) towards higher frequencies will only be weak. However, the more common the bacteria become, the stronger the selection and hence the faster their spread through the population (positive frequency-dependent selection). Unimpeded, the bacteria can therefore quickly reach infection frequencies of 100%. [19]
However, a number of empirically well-documented factors can slow down or even prevent the spread of CI-inducing agents. [35] These include imperfect maternal transmission, reduced fitness of infected individuals, or incomplete CI. When maternal transmission is incomplete and/or infected females have a reduced fitness, an 'infection threshold' arises so that the bacteria spread from an initial frequency above this threshold but become extinct when their initial frequency is below the threshold. [36] The invasion threshold may be overcome through random genetic drift and therefore facilitated by small (at least locally) population sizes. [35]
More complex scenarios than that of a simple host population have been explored through mathematical models, including models with more than one strain or species of maternally inherited bacteria, [37] structured host populations, [38] random genetic drift [39] and overlapping generations. [40]
CI, as described by Werren, [27] results in selection pressure on uninfected males, as infected females can mate both with uninfected males and infected males, but uninfected females cannot mate with infected males. As Wolbachia are only transmitted by females, this mechanism promotes the spread of Wolbachia and therefore keeps Wolbachia from dying out because of incomplete transmission. This has led to discoveries in control of disease transmission by using Wolbachia to control the reproduction of a population by introducing Wolbachia-infected males. [41] This has been seen in the Aedes, mosquito, family, in the Aedes albopictus and Aedes aegypti species.
It is speculated that CI can lead to "rapid speciation". [27] When two populations of the same species are infected by two Wolbachia strains A and B, they might be bidirectionally incompatible and crosses between the two populations do not lead to viable offspring. Thus gene flow between these two populations is interrupted, leading to constant segregation in development and, finally, to speciation. The populations develop to a point where incompatibility would be maintained even in absence of Wolbachia.
Drosophila is a genus of flies, belonging to the family Drosophilidae, whose members are often called "small fruit flies" or pomace flies, vinegar flies, or wine flies, a reference to the characteristic of many species to linger around overripe or rotting fruit. They should not be confused with the Tephritidae, a related family, which are also called fruit flies ; tephritids feed primarily on unripe or ripe fruit, with many species being regarded as destructive agricultural pests, especially the Mediterranean fruit fly.
Aedes albopictus, from the mosquito (Culicidae) family, also known as the (Asian) tiger mosquito or forest mosquito, is a mosquito native to the tropical and subtropical areas of Southeast Asia. In the past few centuries, however, this species has spread to many countries through the transport of goods and international travel. It is characterized by the white bands on its legs and body.
Wolbachia is a genus of gram-negative bacteria that can either infect many species of arthropod as an intracellular parasite, or act as a mutualistic microbe in filarial nematodes. It is one of the most common parasitic microbes of arthropods, and is possibly the most common reproductive parasite in the biosphere. Its interactions with its hosts are often complex. Some host species cannot reproduce, or even survive, without Wolbachia colonisation. One study concluded that more than 16% of neotropical insect species carry bacteria of this genus, and as many as 25 to 70% of all insect species are estimated to be potential hosts.
Spiroplasma is a genus of Mollicutes, a group of small bacteria without cell walls. Spiroplasma shares the simple metabolism, parasitic lifestyle, fried-egg colony morphology and small genome of other Mollicutes, but has a distinctive helical morphology, unlike Mycoplasma. It has a spiral shape and moves in a corkscrew motion. Many Spiroplasma are found either in the gut or haemolymph of insects where they can act to manipulate host reproduction, or defend the host as endosymbionts. Spiroplasma are also disease-causing agents in the phloem of plants. Spiroplasmas are fastidious organisms, which require a rich culture medium. Typically they grow well at 30 °C, but not at 37 °C. A few species, notably Spiroplasma mirum, grow well at 37 °C, and cause cataracts and neurological damage in suckling mice. The best studied species of spiroplasmas are Spiroplasma poulsonii, a reproductive manipulator and defensive insect symbiont, Spiroplasma citri, the causative agent of citrus stubborn disease, and Spiroplasma kunkelii, the causative agent of corn stunt disease.
Intragenomic conflict refers to the evolutionary phenomenon where genes have phenotypic effects that promote their own transmission in detriment of the transmission of other genes that reside in the same genome. The selfish gene theory postulates that natural selection will increase the frequency of those genes whose phenotypic effects cause their transmission to new organisms, and most genes achieve this by cooperating with other genes in the same genome to build an organism capable of reproducing and/or helping kin to reproduce. The assumption of the prevalence of intragenomic cooperation underlies the organism-centered concept of inclusive fitness. However, conflict among genes in the same genome may arise both in events related to reproduction and altruism.
Aedes aegypti, the yellow fever mosquito, is a mosquito that can spread dengue fever, chikungunya, Zika fever, Mayaro and yellow fever viruses, and other disease agents. The mosquito can be recognized by black and white markings on its legs and a marking in the form of a lyre on the upper surface of its thorax. This mosquito originated in Africa, but is now found in tropical, subtropical and temperate regions throughout the world.
Trichogramma is a genus of minute polyphagous wasps that are endoparasitoids of insect eggs. Trichogramma is one of around 80 genera from the family Trichogrammatidae, with over 200 species worldwide.
Mosquito control manages the population of mosquitoes to reduce their damage to human health, economies, and enjoyment. Mosquito control is a vital public-health practice throughout the world and especially in the tropics because mosquitoes spread many diseases, such as malaria and the Zika virus.
Drosophila simulans is a species of fly closely related to D. melanogaster, belonging to the same melanogaster species subgroup. Its closest relatives are D. mauritiana and D. sechellia.
The mechanisms of reproductive isolation are a collection of evolutionary mechanisms, behaviors and physiological processes critical for speciation. They prevent members of different species from producing offspring, or ensure that any offspring are sterile. These barriers maintain the integrity of a species by reducing gene flow between related species.
Paratransgenesis is a technique that attempts to eliminate a pathogen from vector populations through transgenesis of a symbiont of the vector. The goal of this technique is to control vector-borne diseases. The first step is to identify proteins that prevent the vector species from transmitting the pathogen. The genes coding for these proteins are then introduced into the symbiont, so that they can be expressed in the vector. The final step in the strategy is to introduce these transgenic symbionts into vector populations in the wild. One use of this technique is to prevent mortality for humans from insect-borne diseases. Preventive methods and current controls against vector-borne diseases depend on insecticides, even though some mosquito breeds may be resistant to them. There are other ways to fully eliminate them. “Paratransgenesis focuses on utilizing genetically modified insect symbionts to express molecules within the vector that are deleterious to pathogens they transmit.” The acidic bacteria Asaia symbionts are beneficial in the normal development of mosquito larvae; however, it is unknown what Asais symbionts do to adult mosquitoes.
The confused flour beetle, a type of darkling beetle known as a flour beetle, is a globally found, common pest insect known for attacking and infesting stored flour and grain. They are one of the most common and most destructive insect pests for grain and other food products stored in silos, warehouses, grocery stores, and homes. They engage in cannibalistic behaviors for population control and nutritional benefits. Tribolium confusum practices kin selection to improve individual fitness. Multiple chemicals have been used to manage their infestation, including pyrethin and fungal insecticides.
Mosquito-borne diseases or mosquito-borne illnesses are diseases caused by bacteria, viruses or parasites transmitted by mosquitoes. Nearly 700 million people get a mosquito-borne illness each year, resulting in over tens million deaths. The devastation is almost equivalent to the entire 3 year COVID-19 global pandemic.
Delftia tsuruhatensis is a Gram-negative, rod-shaped, catalase- and oxidase-positive, motile bacterium from the Comamonadaceae family. It was first isolated from a wastewater treatment plant in Japan in 2003. D. tsuruhatensis is an opportunistic and emergent pathogen. All documented human infections are healthcare-associated.
Arsenophonus nasoniae is a species of bacterium which was previously isolated from Nasonia vitripennis, a species of parasitoid wasp. These wasps are generalists which afflict the larvae of parasitic carrion flies such as blowflies, houseflies and flesh flies. A. nasoniae belongs to the phylum Pseudomonadota and family Morganellaceae. The genus Arsenophonus, has a close relationship to the Proteus (bacterium) rather than to that of Salmonella and Escherichia. The genus is composed of gammaproteobacterial, secondary-endosymbionts which are gram-negative. Cells are non-flagellated, non-motile, non-spore forming and form long to highly filamentous rods. Cellular division is exhibited through septation. The name 'Arsenophonus nasoniae gen. nov., sp. nov.' was therefore proposed for the discovered bacterium due to its characteristics and its microbial interaction with N. vitripennis. The type strain of A. nasoniae is Strain SKI4.
Muscidifurax uniraptor is a species of wasp in the family Pteromalidae. The species does not currently have a common name. M. uniraptor is a pupal parasitoid of synanthropic filth-breeding Diptera and is a natural enemy of the housefly Musca domestica and the stable fly Stomoxys calcitrans.
The Drosophila quinaria species group is a speciose lineage of mushroom-feeding flies studied for their specialist ecology, their parasites, population genetics, and the evolution of immune systems. Quinaria species are part of the Drosophila subgenus.
Drosophila innubila is a species of vinegar fly restricted to high-elevation woodlands in the mountains of the southern USA and Mexico, which it likely colonized during the last glacial period. Drosophila innubila is a kind of mushroom-breeding Drosophila, and member of the Drosophila quinaria species group. Drosophila innubila is best known for its association with a strain of male-killing Wolbachia bacteria. These bacteria are parasitic, as they drain resources from the host and cause half the infected female's eggs to abort. However Wolbachia may offer benefits to the fly's fitness in certain circumstances. The D. innubila genome was sequenced in 2019.
"Candidatus Cardinium" is a genus of Gram-negative parasitic bacteria that reside within cells of some arthropods and nematodes. Although they have not yet been isolated in pure culture, they are known to negatively influence reproduction in their hosts in order to further their own proliferation. This leads to their classification as a reproductive parasite. One of the only other examples of this type of parasitism is the genus Wolbachia, which also infects arthropods. These two genera can also co-infect the same animal, as in some nematodes. "Candidatus Cardinium" bacteria use many of the same methods to interfere with host reproduction as Wolbachia, including inducing cytoplasmic incompatibility and distorting the sex ratio in the host population to favor females. The mechanisms by which "Candidatus Cardinium" induces these conditions in hosts are thought to be different from the mechanisms used by Wolbachia. "Candidatus Cardinium" bacteria are maternally inherited; infections are maintained through generations through the egg cells. It is estimated that 6–10% of all arthropods are infected with "Candidatus Cardinium" bacteria.
Altica cirsicola is a species of flea beetle from the genus Altica, which belongs to the family Chrysomelidae. A. cirsicola is found throughout East Asia. Adults feed exclusively on plants from the genus Cirsium. This food resource provides the species with the opportunity to create holes in the leaves of the plant, which helps to provide the beetles with camouflage and protection from predators.