DICING

Last updated

In cryptography, DICING is a stream cypher algorithm developed by Li An-Ping. [1] It has been submitted to the eSTREAM project of the eCRYPT network.

DICING is characterized as a synchronous stream cipher that utilizes a clock-controlled mechanism with innovative steps for altering its operations. The design emphasizes efficiency, reportedly achieving performance that is approximately twice as fast as the Advanced Encryption Standard (AES) (Li, 2006). DICING supports key sizes of 128 bits and 256 bits, with no known vulnerabilities against existing cryptographic attacks such as correlation, algebraic, or distinguishing attacks (Wang & Zhang, 2010). [1]

Related Research Articles

In cryptography, a block cipher is a deterministic algorithm that operates on fixed-length groups of bits, called blocks. Block ciphers are the elementary building blocks of many cryptographic protocols. They are ubiquitous in the storage and exchange of data, where such data is secured and authenticated via encryption.

<span class="mw-page-title-main">Cipher</span> Algorithm for encrypting and decrypting information

In cryptography, a cipher is an algorithm for performing encryption or decryption—a series of well-defined steps that can be followed as a procedure. An alternative, less common term is encipherment. To encipher or encode is to convert information into cipher or code. In common parlance, "cipher" is synonymous with "code", as they are both a set of steps that encrypt a message; however, the concepts are distinct in cryptography, especially classical cryptography.

<span class="mw-page-title-main">Stream cipher</span> Type of symmetric key cipher

A stream cipher is a symmetric key cipher where plaintext digits are combined with a pseudorandom cipher digit stream (keystream). In a stream cipher, each plaintext digit is encrypted one at a time with the corresponding digit of the keystream, to give a digit of the ciphertext stream. Since encryption of each digit is dependent on the current state of the cipher, it is also known as state cipher. In practice, a digit is typically a bit and the combining operation is an exclusive-or (XOR).

<span class="mw-page-title-main">Symmetric-key algorithm</span> Algorithm

Symmetric-key algorithms are algorithms for cryptography that use the same cryptographic keys for both the encryption of plaintext and the decryption of ciphertext. The keys may be identical, or there may be a simple transformation to go between the two keys. The keys, in practice, represent a shared secret between two or more parties that can be used to maintain a private information link. The requirement that both parties have access to the secret key is one of the main drawbacks of symmetric-key encryption, in comparison to public-key encryption. However, symmetric-key encryption algorithms are usually better for bulk encryption. With exception of the one-time pad they have a smaller key size, which means less storage space and faster transmission. Due to this, asymmetric-key encryption is often used to exchange the secret key for symmetric-key encryption.

In cryptography, an initialization vector (IV) or starting variable is an input to a cryptographic primitive being used to provide the initial state. The IV is typically required to be random or pseudorandom, but sometimes an IV only needs to be unpredictable or unique. Randomization is crucial for some encryption schemes to achieve semantic security, a property whereby repeated usage of the scheme under the same key does not allow an attacker to infer relationships between segments of the encrypted message. For block ciphers, the use of an IV is described by the modes of operation.

<span class="mw-page-title-main">Block cipher mode of operation</span> Cryptography algorithm

In cryptography, a block cipher mode of operation is an algorithm that uses a block cipher to provide information security such as confidentiality or authenticity. A block cipher by itself is only suitable for the secure cryptographic transformation of one fixed-length group of bits called a block. A mode of operation describes how to repeatedly apply a cipher's single-block operation to securely transform amounts of data larger than a block.

<span class="mw-page-title-main">Ciphertext</span> Encrypted information

In cryptography, ciphertext or cyphertext is the result of encryption performed on plaintext using an algorithm, called a cipher. Ciphertext is also known as encrypted or encoded information because it contains a form of the original plaintext that is unreadable by a human or computer without the proper cipher to decrypt it. This process prevents the loss of sensitive information via hacking. Decryption, the inverse of encryption, is the process of turning ciphertext into readable plaintext. Ciphertext is not to be confused with codetext because the latter is a result of a code, not a cipher.

A cryptographically secure pseudorandom number generator (CSPRNG) or cryptographic pseudorandom number generator (CPRNG) is a pseudorandom number generator (PRNG) with properties that make it suitable for use in cryptography. It is also referred to as a cryptographic random number generator (CRNG).

In cryptography, confusion and diffusion are two properties of a secure cipher identified by Claude Shannon in his 1945 classified report A Mathematical Theory of Cryptography. These properties, when present, work together to thwart the application of statistics, and other methods of cryptanalysis.

In cryptography, mod n cryptanalysis is an attack applicable to block and stream ciphers. It is a form of partitioning cryptanalysis that exploits unevenness in how the cipher operates over equivalence classes modulo n. The method was first suggested in 1999 by John Kelsey, Bruce Schneier, and David Wagner and applied to RC5P and M6. These attacks used the properties of binary addition and bit rotation modulo a Fermat prime.

<span class="mw-page-title-main">Avalanche effect</span> Concept in cryptography

In cryptography, the avalanche effect is the desirable property of cryptographic algorithms, typically block ciphers and cryptographic hash functions, wherein if an input is changed slightly, the output changes significantly. In the case of high-quality block ciphers, such a small change in either the key or the plaintext should cause a drastic change in the ciphertext. The actual term was first used by Horst Feistel, although the concept dates back to at least Shannon's diffusion.

Phelix is a high-speed stream cipher with a built-in single-pass message authentication code (MAC) functionality, submitted in 2004 to the eSTREAM contest by Doug Whiting, Bruce Schneier, Stefan Lucks, and Frédéric Muller. The cipher uses only the operations of addition modulo 232, exclusive or, and rotation by a fixed number of bits. Phelix uses a 256-bit key and a 128-bit nonce, claiming a design strength of 128 bits. Concerns have been raised over the ability to recover the secret key if the cipher is used incorrectly.

Panama is a cryptographic primitive which can be used both as a hash function and a stream cipher, but its hash function mode of operation has been broken and is not suitable for cryptographic use. Based on StepRightUp, it was designed by Joan Daemen and Craig Clapp and presented in the paper Fast Hashing and Stream Encryption with PANAMA on the Fast Software Encryption (FSE) conference 1998. The cipher has influenced several other designs, for example MUGI and SHA-3.

In cryptography, Galois/Counter Mode (GCM) is a mode of operation for symmetric-key cryptographic block ciphers which is widely adopted for its performance. GCM throughput rates for state-of-the-art, high-speed communication channels can be achieved with inexpensive hardware resources.

In cryptography, SC2000 is a block cipher invented by a research group at Fujitsu Labs. It was submitted to the NESSIE project, but was not selected. It was among the cryptographic techniques recommended for Japanese government use by CRYPTREC in 2003, however, has been dropped to "candidate" by CRYPTREC revision in 2013.

In cryptography, DFC is a symmetric block cipher which was created in 1998 by a group of researchers from École Normale Supérieure, CNRS, and France Télécom and submitted to the AES competition.

In cryptography, SOBER is a family of stream ciphers initially designed by Greg Rose of QUALCOMM Australia starting in 1997. The name is a contrived acronym for Seventeen Octet Byte Enabled Register. Initially the cipher was intended as a replacement for broken ciphers in cellular telephony. The ciphers evolved, and other developers joined the project.

In cryptography, a distinguishing attack is any form of cryptanalysis on data encrypted by a cipher that allows an attacker to distinguish the encrypted data from random data. Modern symmetric-key ciphers are specifically designed to be immune to such an attack. In other words, modern encryption schemes are pseudorandom permutations and are designed to have ciphertext indistinguishability. If an algorithm is found that can distinguish the output from random faster than a brute force search, then that is considered a break of the cipher.

The BEAR and LION block ciphers were invented by Ross Anderson and Eli Biham by combining a stream cipher and a cryptographic hash function. The algorithms use a very large variable block size, on the order of 213 to 223 bits or more. Both are 3-round generalized (alternating) Feistel ciphers, using the hash function and the stream cipher as round functions. BEAR uses the hash function twice with independent keys, and the stream cipher once. LION uses the stream cipher twice and the hash function once. The inventors proved that an attack on either BEAR or LION that recovers the key would break both the stream cipher and the hash.

The following outline is provided as an overview of and topical guide to cryptography:

References

  1. 1 2 Li, An-Ping (May 13, 2008). "A New Stream Cipher: Dicing". arXiv: 0805.1278 .{{cite journal}}: Cite journal requires |journal= (help)