Daqing Wan

Last updated
Daqing Wan
Born1964 (age 5859)
NationalityFlag of the People's Republic of China.svg  China
Alma mater University of Washington
Sichuan University
Chengdu University of Technology
Scientific career
Fields Mathematics
Institutions University of California, Irvine
Doctoral advisor Neal Koblitz

Daqing Wan (born 1964 in China) is a Chinese mathematician working in the United States. He received his Ph.D. from the University of Washington in Seattle in 1991, under the direction of Neal Koblitz. [1] Since 1997, he has been on the faculty of mathematics at the University of California at Irvine; he has also held visiting positions at the Institute for Advanced Study in Princeton, New Jersey, Pennsylvania State University, the University of Rennes, the Mathematical Sciences Research Institute in Berkeley, California, and the Chinese Academy of Sciences in Beijing. [2]

Contents

His primary interests include number theory and arithmetic algebraic geometry, particularly zeta functions over finite fields. He is known for his proof of Dwork's conjecture [3] that the p-adic unit root zeta function attached to a family of varieties over a finite field of characteristic p is p-adic meromorphic. [4] [5] [6] He received the Morningside Silver Medal of mathematics in 2001. [7]

See also

Related Research Articles

In mathematics, the Birch and Swinnerton-Dyer conjecture describes the set of rational solutions to equations defining an elliptic curve. It is an open problem in the field of number theory and is widely recognized as one of the most challenging mathematical problems. It is named after mathematicians Bryan John Birch and Peter Swinnerton-Dyer, who developed the conjecture during the first half of the 1960s with the help of machine computation. As of 2023, only special cases of the conjecture have been proven.

<span class="mw-page-title-main">Kakeya set</span> Shape containing unit line segments in all directions

In mathematics, a Kakeya set, or Besicovitch set, is a set of points in Euclidean space which contains a unit line segment in every direction. For instance, a disk of radius 1/2 in the Euclidean plane, or a ball of radius 1/2 in three-dimensional space, forms a Kakeya set. Much of the research in this area has studied the problem of how small such sets can be. Besicovitch showed that there are Besicovitch sets of measure zero.

<span class="mw-page-title-main">Jean Bourgain</span> Belgian mathematician

Jean Louis, baron Bourgain was a Belgian mathematician. He was awarded the Fields Medal in 1994 in recognition of his work on several core topics of mathematical analysis such as the geometry of Banach spaces, harmonic analysis, ergodic theory and nonlinear partial differential equations from mathematical physics.

<span class="mw-page-title-main">Arithmetic geometry</span> Branch of algebraic geometry focused on problems in number theory

In mathematics, arithmetic geometry is roughly the application of techniques from algebraic geometry to problems in number theory. Arithmetic geometry is centered around Diophantine geometry, the study of rational points of algebraic varieties.

In mathematics, in particular algebraic topology, a p-compact group is a homotopical version of a compact Lie group, but with all the local structure concentrated at a single prime p. This concept was introduced in Dwyer & Wilkerson (1994), making precise earlier notions of a mod p finite loop space. A p-compact group has many Lie-like properties like maximal tori and Weyl groups, which are defined purely homotopically in terms of the classifying space, but with the important difference that the Weyl group, rather than being a finite reflection group over the integers, is now a finite p-adic reflection group. They admit a classification in terms of root data, which mirrors the classification of compact Lie groups, but with the integers replaced by the p-adic integers.

<span class="mw-page-title-main">Shou-Wu Zhang</span> Chinese-American mathematician (born 1962)

Shou-Wu Zhang is a Chinese-American mathematician known for his work in number theory and arithmetic geometry. He is currently a Professor of Mathematics at Princeton University.

Smale's problems are a list of eighteen unsolved problems in mathematics proposed by Steve Smale in 1998 and republished in 1999. Smale composed this list in reply to a request from Vladimir Arnold, then vice-president of the International Mathematical Union, who asked several mathematicians to propose a list of problems for the 21st century. Arnold's inspiration came from the list of Hilbert's problems that had been published at the beginning of the 20th century.

<span class="mw-page-title-main">Mark Haiman</span> American mathematician

Mark David Haiman is a mathematician at the University of California at Berkeley who proved the Macdonald positivity conjecture for Macdonald polynomials. He received his Ph.D in 1984 in the Massachusetts Institute of Technology under the direction of Gian-Carlo Rota. Previous to his appointment at Berkeley, he held positions at the University of California, San Diego and the Massachusetts Institute of Technology.

The mathematician Shmuel Aaron Weinberger is an American topologist. He completed a PhD in mathematics in 1982 at New York University under the direction of Sylvain Cappell. Weinberger was, from 1994 to 1996, the Thomas A. Scott Professor of Mathematics at the University of Pennsylvania, and he is currently the Andrew MacLeish Professor of Mathematics and chair of the Mathematics department at the University of Chicago.

Sergei Vladimirovich Konyagin is a Russian mathematician. He is a professor of mathematics at the Moscow State University.

Freydoon Shahidi is an Iranian American mathematician who is a Distinguished Professor of Mathematics at Purdue University in the U.S. He is known for a method of automorphic L-functions which is now known as the Langlands–Shahidi method.

In mathematics, the Ahlfors conjecture, now a theorem, states that the limit set of a finitely-generated Kleinian group is either the whole Riemann sphere, or has measure 0.

<span class="mw-page-title-main">Christopher Deninger</span> German mathematician

Christopher Deninger is a German mathematician at the University of Münster. Deninger's research focuses on arithmetic geometry, including applications to L-functions.

<span class="mw-page-title-main">Joel Hass</span>

Joel Hass is an American mathematician and a professor of mathematics and at the University of California, Davis. His work focuses on geometric and topological problems in dimension 3.

Prakash Belkale is an Indian-American mathematician, specializing in algebraic geometry and representation theory.

In mathematics, the Dwork unit root zeta function, named after Bernard Dwork, is the L-function attached to the p-adic Galois representation arising from the p-adic etale cohomology of an algebraic variety defined over a global function field of characteristic p. The Dwork conjecture (1973) states that his unit root zeta function is p-adic meromorphic everywhere. This conjecture was proved by Wan (2000).

<span class="mw-page-title-main">Kari Vilonen</span> Finnish mathematician (born 1955)

Kari Kaleva Vilonen is a Finnish mathematician, specializing in geometric representation theory. He is currently a professor at the University of Melbourne.

Song Sun is a Chinese mathematician whose research concerns geometry and topology. A Sloan Research Fellow, he is a professor at the Department of Mathematics of the University of California, Berkeley, where he has been since 2018. In 2019, he was awarded the Oswald Veblen Prize in Geometry.

Shahar Mozes is an Israeli mathematician.

References

  1. Daqing Wan at the Mathematics Genealogy Project.
  2. Curriculum vitae from Wan's web site.
  3. Dwork, Bernard (1973), "Normalized period matrices II", Annals of Mathematics , 98 (1): 1–57, doi:10.2307/1970905, JSTOR   1970905 .
  4. Wan, Daqing (1999), "Dwork's conjecture on unit root zeta functions", Annals of Mathematics , 150 (3): 867–927, arXiv: math/9911270 , Bibcode:1999math.....11270W, doi:10.2307/121058, JSTOR   121058, S2CID   18111544 .
  5. Wan, Daqing (2000), "Higher rank case of Dwork's conjecture", Journal of the American Mathematical Society , 13 (4): 807–852, arXiv: math/0005309 , Bibcode:2000math......5309W, doi:10.1090/S0894-0347-00-00339-8, S2CID   14898094 .
  6. Wan, Daqing (2000), "Rank one case of Dwork's conjecture", Journal of the American Mathematical Society , 13 (4): 853–908, arXiv: math/0005308 , Bibcode:2000math......5308W, doi:10.1090/S0894-0347-00-00340-4, S2CID   14824386 .
  7. Morningside Award, retrieved 2010-01-27.