Dark fermentation

Last updated

Dark fermentation is the fermentative conversion of organic substrate to biohydrogen. It is a complex process manifested by diverse groups of bacteria, involving a series of biochemical reactions using three steps similar to anaerobic conversion. Dark fermentation differs from photofermentation in that it proceeds without the presence of light.

Contents

Overview

Fermentative/hydrolytic microorganisms hydrolyze complex organic polymers to monomers which are further converted to a mixture of lower-molecular-weight organic acids and alcohols by obligatory producing acidogenic bacteria.[ citation needed ]

Utilization of wastewater as a potential substrate for biohydrogen production has been drawing considerable interest in recent years especially in the dark fermentation process. Industrial wastewater as a fermentative substrate for H2 production addresses most of the criteria required for substrate selection viz., availability, cost and biodegradability. [1] [2] Chemical wastewater (Venkata Mohan, et al., 2007a,b), cattle wastewater (Tang, et al., 2008), dairy process wastewater (Venkata Mohan, et al. 2007c, Rai et al. 2012), starch hydrolysate wastewater (Chen, et al., 2008) and designed synthetic wastewater (Venkata Mohan, et al., 2007a, 2008b) have been reported to produce biohydrogen apart from wastewater treatment from dark fermentation processes using selectively enriched mixed cultures under acidophilic conditions. Various wastewaters viz., paper mill wastewater (Idania, et al., 2005), starch effluent (Zhang, et al., 2003), food processing wastewater (Shin et al., 2004, van Ginkel, et al., 2005), domestic wastewater (Shin, et al., 2004, 2008e), rice winery wastewater (Yu et al., 2002), distillery and molasses based wastewater (Ren, et al., 2007, Venkata Mohan, et al., 2008a), wheat straw wastes (Fan, et al., 2006) and palm oil mill wastewater (Vijayaraghavan and Ahmed, 2006) have been studied as fermentable substrates for H2 production along with wastewater treatment. Using wastewater as a fermentable substrate facilitates both wastewater treatment apart from H2 production. The efficiency of the dark fermentative H2 production process was found to depend on pre-treatment of the mixed consortia used as a biocatalyst, operating pH, and organic loading rate apart from wastewater characteristics (Venkata Mohan, et al., 2007d, 2008c, d, Vijaya Bhaskar, et al., 2008d).

In spite of its advantages, the main challenge observed with fermentative H2 production processes is the relatively low energy conversion efficiency from the organic source. Typical H2 yields range from 1 to 2  mol of H2/mol of glucose, which results in 80-90% of the initial COD remaining in the wastewater in the form of various volatile organic acids (VFAs) and solvents, such as acetic acid, propionic acid, butyric acid, and ethanol. Even under optimal conditions about 60-70% of the original organic matter remains in solution. Bioaugmentation with selectively enriched acidogenic consortia to enhance H2 production was also reported (Venkata Mohan, et al., 2007b). Generation and accumulation of soluble acid metabolites causes a sharp drop in the system pH and inhibits the H2 production process. Usage of unutilized carbon sources present in acidogenic process for additional biogas production sustains the practical applicability of the process. One way to utilize/recover the remaining organic matter in a usable form is to produce additional H2 by terminal integration of photo-fermentative processes of H2 production (Venkata Mohan, et al. 2008e, Rai et al. 2012) and methane by integrating acidogenic processes to terminal methanogenic processes.[ citation needed ]

See also

Related Research Articles

Fermentation is a metabolic process whereby electrons released from nutrients are ultimately transferred to molecules obtained from the breakdown of those same nutrients.

<span class="mw-page-title-main">Anaerobic digestion</span> Processes by which microorganisms break down biodegradable material in the absence of oxygen

Anaerobic digestion is a sequence of processes by which microorganisms break down biodegradable material in the absence of oxygen. The process is used for industrial or domestic purposes to manage waste or to produce fuels. Much of the fermentation used industrially to produce food and drink products, as well as home fermentation, uses anaerobic digestion.

<span class="mw-page-title-main">Hydrogen cycle</span> Hydrogen exchange between the living and non-living world

The hydrogen cycle consists of hydrogen exchanges between biotic (living) and abiotic (non-living) sources and sinks of hydrogen-containing compounds.

Acidogenesis is the second stage in the four stages of anaerobic digestion:

Microbial metabolism is the means by which a microbe obtains the energy and nutrients it needs to live and reproduce. Microbes use many different types of metabolic strategies and species can often be differentiated from each other based on metabolic characteristics. The specific metabolic properties of a microbe are the major factors in determining that microbe's ecological niche, and often allow for that microbe to be useful in industrial processes or responsible for biogeochemical cycles.

Hydrogen gas is produced by several industrial methods. Nearly all of the world's current supply of hydrogen is created from fossil fuels. Most hydrogen is gray hydrogen made through steam methane reforming. In this process, hydrogen is produced from a chemical reaction between steam and methane, the main component of natural gas. Producing one tonne of hydrogen through this process emits 6.6–9.3 tonnes of carbon dioxide. When carbon capture and storage is used to remove a large fraction of these emissions, the product is known as blue hydrogen.

Microbial fuel cell (MFC) is a type of bioelectrochemical fuel cell system also known as micro fuel cell that generates electric current by diverting electrons produced from the microbial oxidation of reduced compounds on the anode to oxidized compounds such as oxygen on the cathode through an external electrical circuit. MFCs produce electricity by using the electrons derived from biochemical reactions catalyzed by bacteria. Comprehensive Biotechnology MFCs can be grouped into two general categories: mediated and unmediated. The first MFCs, demonstrated in the early 20th century, used a mediator: a chemical that transfers electrons from the bacteria in the cell to the anode. Unmediated MFCs emerged in the 1970s; in this type of MFC the bacteria typically have electrochemically active redox proteins such as cytochromes on their outer membrane that can transfer electrons directly to the anode. In the 21st century MFCs have started to find commercial use in wastewater treatment.

<span class="mw-page-title-main">Bioconversion of biomass to mixed alcohol fuels</span>

The bioconversion of biomass to mixed alcohol fuels can be accomplished using the MixAlco process. Through bioconversion of biomass to a mixed alcohol fuel, more energy from the biomass will end up as liquid fuels than in converting biomass to ethanol by yeast fermentation.

In biology, syntrophy, syntrophism, or cross-feeding is the cooperative interaction between at least two microbial species to degrade a single substrate. This type of biological interaction typically involves the transfer of one or more metabolic intermediates between two or more metabolically diverse microbial species living in close proximity to each other. Thus, syntrophy can be considered an obligatory interdependency and a mutualistic metabolism between different microbial species, wherein the growth of one partner depends on the nutrients, growth factors, or substrates provided by the other(s).

<span class="mw-page-title-main">Fermentation</span> Metabolic redox process producing energy in the absence of oxygen.

Fermentation is a type of redox metabolism carried out in the absence of oxygen. During fermentation, organic molecules are catabolized and donate electrons to other organic molecules. In the process, ATP and organic end products are formed.

Coffee wastewater, also known as coffee effluent, is a byproduct of coffee processing. Its treatment and disposal is an important environmental consideration for coffee processing as wastewater is a form of industrial water pollution.

Fed-batch culture is, in the broadest sense, defined as an operational technique in biotechnological processes where one or more nutrients (substrates) are fed (supplied) to the bioreactor during cultivation and in which the product(s) remain in the bioreactor until the end of the run. An alternative description of the method is that of a culture in which "a base medium supports initial cell culture and a feed medium is added to prevent nutrient depletion". It is also a type of semi-batch culture. In some cases, all the nutrients are fed into the bioreactor. The advantage of the fed-batch culture is that one can control concentration of fed-substrate in the culture liquid at arbitrarily desired levels.

Klebsiella aerogenes, previously known as Enterobacter aerogenes, is a Gram-negative, oxidase-negative, catalase-positive, citrate-positive, indole-negative, rod-shaped bacterium. Capable of motility via peritrichous flagella, the bacterium is approximately 1–3 microns in length.

<i>Scenedesmus</i> Genus of green algae

Scenedesmus is a genus of green algae, in the class Chlorophyceae. They are colonial and non-motile. They are one of the most common components of phytoplankton in freshwater habitats worldwide.

Electrohydrogenesis or biocatalyzed electrolysis is the name given to a process for generating hydrogen gas from organic matter being decomposed by bacteria. This process uses a modified fuel cell to contain the organic matter and water. A small amount, 0.2–0.8 V of electricity is used, the original article reports an overall energy efficiency of 288% can be achieved. This work was reported by Cheng and Logan.

<span class="mw-page-title-main">Photofermentation</span>

Photofermentation is the fermentative conversion of organic substrate to biohydrogen manifested by a diverse group of photosynthetic bacteria by a series of biochemical reactions involving three steps similar to anaerobic conversion. Photofermentation differs from dark fermentation because it only proceeds in the presence of light.

Fermentative hydrogen production is the fermentative conversion of organic substrates to H2. Hydrogen produced in this manner is often called biohydrogen. The conversion is effected by bacteria and protozoa, which employ enzymes. Fermentative hydrogen production is one of several anaerobic conversions.

<span class="mw-page-title-main">Microbial electrolysis cell</span>

A microbial electrolysis cell (MEC) is a technology related to Microbial fuel cells (MFC). Whilst MFCs produce an electric current from the microbial decomposition of organic compounds, MECs partially reverse the process to generate hydrogen or methane from organic material by applying an electric current. The electric current would ideally be produced by a renewable source of power. The hydrogen or methane produced can be used to produce electricity by means of an additional PEM fuel cell or internal combustion engine.

Microbial electrochemical technologies (METs) use microorganisms as electrochemical catalyst, merging the microbial metabolism with electrochemical processes for the production of bioelectricity, biofuels, H2 and other valuable chemicals. Microbial fuel cells (MFC) and microbial electrolysis cells (MEC) are prominent examples of METs. While MFC is used to generate electricity from organic matter typically associated with wastewater treatment, MEC use electricity to drive chemical reactions such as the production of H2 or methane. Recently, microbial electrosynthesis cells (MES) have also emerged as a promising MET, where valuable chemicals can be produced in the cathode compartment. Other MET applications include microbial remediation cell, microbial desalination cell, microbial solar cell, microbial chemical cell, etc.,.

Lutispora saccharofermentans, is an anaerobic bacteria. Lutispora saccharofermentans was first isolated from methanogenic enrichment cultures derived from a material collected from a lab-scale methanogenic landfill bioreactor.

References

  1. Angenent, Largus T.; Karim, Khursheed; Al-Dahhan, Muthanna H.; Wrenn, Brian A.; Domíguez-Espinosa, Rosa (September 2004). "Production of bioenergy and biochemicals from industrial and agricultural wastewater". Trends in Biotechnology. 22 (9): 477–485. doi:10.1016/j.tibtech.2004.07.001. PMID   15331229.
  2. Kapdan, Ilgi Karapinar; Kargi, Fikret (March 2006). "Bio-hydrogen production from waste materials". Enzyme and Microbial Technology. 38 (5): 569–582. doi:10.1016/j.enzmictec.2005.09.015.