This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these template messages)
|
Database testing usually consists of a layered process, including the user interface (UI) layer, the business layer, the data access layer and the database itself. The UI layer deals with the interface design of the database, while the business layer includes databases supporting business strategies.
Databases, the collection of interconnected files on a server, storing information, may not deal with the same type of data, i.e. databases may be heterogeneous. As a result, many kinds of implementation and integration errors may occur in large database systems, which negatively affect the system's performance, reliability, consistency and security. Thus, it is important to test in order to obtain a database system which satisfies the ACID properties (Atomicity, Consistency, Isolation, and Durability) of a database management system. [1]
One of the most critical layers is the data access layer, which deals with databases directly during the communication process. Database testing mainly takes place at this layer and involves testing strategies such as quality control and quality assurance of the product databases. [2] Testing at these different layers is frequently used to maintain the consistency of database systems, most commonly seen in the following examples:
The figure indicates the areas of testing involved during different database testing methods, such as black-box testing and white-box testing.
Black-box testing involves testing interfaces and the integration of the database, which includes:
With the help of these techniques, the functionality of the database can be tested thoroughly.
Pros and Cons of black box testing include: Test case generation in black box testing is fairly simple. Their generation is completely independent of software development and can be done in an early stage of development. As a consequence, the programmer has better knowledge of how to design the database application and uses less time for debugging. Cost for development of black box test cases is lower than development of white box test cases. The major drawback of black box testing is that it is unknown how much of the program is being tested. Also, certain errors cannot be detected. [3]
White-box testing mainly deals with the internal structure of the database. The specification details are hidden from the user.
The main advantage of white box testing in database testing is that coding errors are detected, so internal bugs in the database can be eliminated. The limitation of white box testing is that SQL statements are not covered.
While generating test cases for database testing, the semantics of SQL statement need to be reflected in the test cases. For that purpose, a technique called WHite bOx Database Application Technique "(WHODATE)" is used. As shown in the figure, SQL statements are independently converted into GPL statements, followed by traditional white box testing to generate test cases which include SQL semantics. [4]
A set fixture describes the initial state of the database before entering the testing. After setting fixtures, database behavior is tested for defined test cases. Depending on the outcome, test cases are either modified or kept as is. The "tear down" stage either results in terminating testing or continuing with other test cases. [5]
For successful database testing the following workflow executed by each single test is commonly executed:
create_input_dialog["label"]
, is used to validate the output with user inputs.In computing, a database is an organized collection of data stored and accessed electronically through the use of a database management system. Small databases can be stored on a file system, while large databases are hosted on computer clusters or cloud storage. The design of databases spans formal techniques and practical considerations, including data modeling, efficient data representation and storage, query languages, security and privacy of sensitive data, and distributed computing issues, including supporting concurrent access and fault tolerance.
PostgreSQL, also known as Postgres, is a free and open-source relational database management system (RDBMS) emphasizing extensibility and SQL compliance. It was originally named POSTGRES, referring to its origins as a successor to the Ingres database developed at the University of California, Berkeley. In 1996, the project was renamed to PostgreSQL to reflect its support for SQL. After a review in 2007, the development team decided to keep the name PostgreSQL and the alias Postgres.
Software testing is the act of examining the artifacts and the behavior of the software under test by validation and verification. Software testing can also provide an objective, independent view of the software to allow the business to appreciate and understand the risks of software implementation. Test techniques include, but are not necessarily limited to:
Db2 is a family of data management products, including database servers, developed by IBM. It initially supported the relational model, but was extended to support object–relational features and non-relational structures like JSON and XML. The brand name was originally styled as DB/2, then DB2 until 2017 and finally changed to its present form.
A database transaction symbolizes a unit of work, performed within a database management system against a database, that is treated in a coherent and reliable way independent of other transactions. A transaction generally represents any change in a database. Transactions in a database environment have two main purposes:
White-box testing is a method of software testing that tests internal structures or workings of an application, as opposed to its functionality. In white-box testing, an internal perspective of the system is used to design test cases. The tester chooses inputs to exercise paths through the code and determine the expected outputs. This is analogous to testing nodes in a circuit, e.g. in-circuit testing (ICT). White-box testing can be applied at the unit, integration and system levels of the software testing process. Although traditional testers tended to think of white-box testing as being done at the unit level, it is used for integration and system testing more frequently today. It can test paths within a unit, paths between units during integration, and between subsystems during a system–level test. Though this method of test design can uncover many errors or problems, it has the potential to miss unimplemented parts of the specification or missing requirements. Where white-box testing is design-driven, that is, driven exclusively by agreed specifications of how each component of software is required to behave, white-box test techniques can accomplish assessment for unimplemented or missing requirements.
The Access Database Engine is a database engine on which several Microsoft products have been built. The first version of Jet was developed in 1992, consisting of three modules which could be used to manipulate a database.
The object–relational impedance mismatch is a set of conceptual and technical difficulties that are often encountered when organizations store data in relational data stores and then use this data via domain-driven object models, the default method of implementing business-centric objects in object-oriented programming languages. The problems arise not from a failure of addressing data as relational nor as domain objects, but as a result of the difficulty of implementing a data mapping between the data values of the two conceptually different logic models; both models are logical models that can be implemented differently depending upon the technology utilized. These issues are not limited to applications, but exist across an enterprise, whenever data is stored in a relational manner then utilized as domain-driven object models, and vice versa. These difficulties are sometimes mitigated by use of a object-oriented data store, but that too has its own set of implementation difficulties.
H2 is a relational database management system written in Java. It can be embedded in Java applications or run in client-server mode.
A spatial database is a general-purpose database that has been enhanced to include spatial data that represents objects defined in a geometric space, along with tools for querying and analyzing such data. Most spatial databases allow the representation of simple geometric objects such as points, lines and polygons. Some spatial databases handle more complex structures such as 3D objects, topological coverages, linear networks, and triangulated irregular networks (TINs). While typical databases have developed to manage various numeric and character types of data, such databases require additional functionality to process spatial data types efficiently, and developers have often added geometry or feature data types. The Open Geospatial Consortium (OGC) developed the Simple Features specification and sets standards for adding spatial functionality to database systems. The SQL/MM Spatial ISO/IEC standard is a part of the SQL/MM multimedia standard and extends the Simple Features standard with data types that support circular interpolations. Almost all current relational and object-relational database management systems now have spatial extensions, and some GIS software vendors have developed their own spatial extensions to database management systems.
An Entity–attribute–value model (EAV) is a data model optimized for the space-efficient storage of sparse—or ad-hoc—property or data values, intended for situations where runtime usage patterns are arbitrary, subject to user variation, or otherwise unforseeable using a fixed design. The use-case targets applications which offer a large or rich system of defined property types, which are in turn appropriate to a wide set of entities, but where typically only a small, specific selection of these are instantated for a given entity. Therefore, this type of data model relates to the mathematical notion of a sparse matrix.
Stress testing is a software testing activity that determines the robustness of software by testing beyond the limits of normal operation. Stress testing is particularly important for "mission critical" software, but is used for all types of software. Stress tests commonly put a greater emphasis on robustness, availability, and error handling under a heavy load, than on what would be considered correct behavior under normal circumstances.
Microsoft SQL Server is a proprietary relational database management system developed by Microsoft. As a database server, it is a software product with the primary function of storing and retrieving data as requested by other software applications—which may run either on the same computer or on another computer across a network. Microsoft markets at least a dozen different editions of Microsoft SQL Server, aimed at different audiences and for workloads ranging from small single-machine applications to large Internet-facing applications with many concurrent users.
db4o was an embeddable open-source object database for Java and .NET developers. It was developed, commercially licensed and supported by Actian. In October 2014, Actian declined to continue to actively pursue and promote the commercial db4o product offering for new customers.
The MySQLi Extension is a relational database driver used in the PHP scripting language to provide an interface with MySQL databases.
XLeratorDB is a suite of database function libraries that enable Microsoft SQL Server to perform a wide range of additional (non-native) business intelligence and ad hoc analytics. The libraries, which are embedded and run centrally on the database, include more than 450 individual functions similar to those found in Microsoft Excel spreadsheets. The individual functions are grouped and sold as six separate libraries based on usage: finance, statistics, math, engineering, unit conversions and strings. WestClinTech, the company that developed XLeratorDB, claims it is "the first commercial function package add-in for Microsoft SQL Server."
Apache Hive is a data warehouse software project built on top of Apache Hadoop for providing data query and analysis. Hive gives an SQL-like interface to query data stored in various databases and file systems that integrate with Hadoop. Traditional SQL queries must be implemented in the MapReduce Java API to execute SQL applications and queries over distributed data. Hive provides the necessary SQL abstraction to integrate SQL-like queries (HiveQL) into the underlying Java without the need to implement queries in the low-level Java API. Since most data warehousing applications work with SQL-based querying languages, Hive aids portability of SQL-based applications to Hadoop. While initially developed by Facebook, Apache Hive is used and developed by other companies such as Netflix and the Financial Industry Regulatory Authority (FINRA). Amazon maintains a software fork of Apache Hive included in Amazon Elastic MapReduce on Amazon Web Services.
High performance computing applications run on massively parallel supercomputers consist of concurrent programs designed using multi-threaded, multi-process models. The applications may consist of various constructs with varying degree of parallelism. Although high performance concurrent programs use similar design patterns, models and principles as that of sequential programs, unlike sequential programs, they typically demonstrate non-deterministic behavior. The probability of bugs increases with the number of interactions between the various parallel constructs. Race conditions, data races, deadlocks, missed signals and live lock are common error types.
The following is provided as an overview of and topical guide to databases:
This article discusses a set of tactics useful in software testing. It is intended as a comprehensive list of tactical approaches to Software Quality Assurance (more widely colloquially known as Quality Assurance and general application of the test method.