David Kipping

Last updated

David Kipping
David Kipping.jpg
Kipping in 2019
Born1983 or 1984
Education University of Cambridge (BA),(MS), University College London (PhD)
Occupation(s)Associate professor, astronomer, Youtuber
Scientific career
FieldsAstronomy, astrophysics, exomoons
Institutions Columbia University
Thesis The Transits of Extrasolar Planets with Moons  (2011)
Doctoral advisor Giovanna Tinetti
YouTube information
Channels
Genre(s)Astronomy, Astrophysics, Science Communication
Subscribers
  • 936K
Total views
  • 92,333,907
Website https://www.coolworldslab.com/

David Kipping is a British-American astronomer and associate professor at Columbia University, where he leads the Cool Worlds Lab. [1] [2] [3] Kipping grew up in Warwickshire, he studied at Cambridge University and University College London, and completed a post-doctoral fellowship at Harvard University before joining Columbia University as an assistant professor in 2015. In 2016, Kipping launched the Cool Worlds YouTube channel to share his research topics with the wider public.

Along with Ingo Waldmann and Steve Fossey, Kipping discovered in 2009 that the exoplanet HD 80606b (previously known from radial velocity) transits its host star. [4]

In 2011, Kipping founded the Hunt for Exomoons with Kepler, a project that searches for exomoons, natural satellites of exoplanets, using data collected by the Kepler space telescope. [5]

In 2019, Kipping proposed a method of spaceflight known as the halo drive. [6]

Related Research Articles

<span class="mw-page-title-main">Exomoon</span> Moon beyond the Solar System

An exomoon or extrasolar moon is a natural satellite that orbits an exoplanet or other non-stellar extrasolar body.

<span class="mw-page-title-main">Habitability of natural satellites</span> Measure of the potential of natural satellites to have environments hospitable to life

The habitability of natural satellites is the potential of moons to provide habitats for life, though it is not an indicator that they harbor it. Natural satellites are expected to outnumber planets by a large margin and the study of their habitability is therefore important to astrobiology and the search for extraterrestrial life. There are, nevertheless, significant environmental variables specific to moons.

<span class="mw-page-title-main">Kepler-22b</span> Super-Earth exoplanet orbiting Kepler-22

Kepler-22b is an exoplanet orbiting within the habitable zone of the Sun-like star Kepler-22. It is located about 640 light-years from Earth in the constellation of Cygnus. It was discovered by NASA's Kepler Space Telescope in December 2011 and was the first known transiting planet to orbit within the habitable zone of a Sun-like star, where liquid water could exist on the planet's surface. Kepler-22 is too dim to be seen with the naked eye.

<span class="mw-page-title-main">John Johnson (astronomer)</span> American astrophysicist and professor of astronomy

John Asher Johnson is an American astrophysicist and professor of astronomy at Harvard. He is the first tenured African-American physical science professor in the history of the university. Johnson is well known for discovering three of the first known planets smaller than the Earth outside of the solar system, including the first Mars-sized exoplanet.

<span class="mw-page-title-main">Subsatellite</span> A satellite that orbits a natural satellite

A subsatellite, also known as a submoon or informally a moonmoon, is a "moon of a moon" or a hypothetical natural satellite that orbits the moon of a planet.

<span class="mw-page-title-main">Kepler-47c</span> Temperate gas giant in Kepler-47 system

Kepler-47c is an exoplanet orbiting the binary star system Kepler-47, the outermost of three such planets discovered by NASA's Kepler spacecraft. The system, also involving two other exoplanets, is located about 3,400 light-years away.

<span class="mw-page-title-main">PH2</span> Star in the constellation Cygnus

PH2, also known as Kepler-86, or KIC 12735740, is a G-type star 1,120 light-years distant within the constellation Cygnus. Roughly the size and temperature of the Sun, PH2 gained prominence when it was known to be the host of one of 42 planet candidates detected by the Planet Hunters citizen science project in its second data release. The candidate orbiting around PH2, known as PH2b, had been determined to have a spurious detection probability of only 0.08%, thus effectively confirming its existence as a planet.

<span class="mw-page-title-main">Hunt for Exomoons with Kepler</span> Space research project

The Hunt for Exomoons with Kepler (HEK) is a project whose aim is to search for exomoons, natural satellites of exoplanets, using data collected by the Kepler space telescope. Founded by British exomoonologist David Kipping and affiliated with the Center for Astrophysics | Harvard & Smithsonian, HEK submitted its first paper on June 30, 2011. HEK has since submitted five more papers, finding some evidence for an exomoon around a planet orbiting Kepler-1625b in July 2017.

<span class="mw-page-title-main">Kepler-90h</span> Exoplanet in the constellation Draco

Kepler-90h is an exoplanet orbiting within the habitable zone of the early G-type main sequence star Kepler-90, the outermost of eight such planets discovered by NASA's Kepler spacecraft. It is located about 2,840 light-years, from Earth in the constellation Draco. The exoplanet was found by using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured.

<span class="mw-page-title-main">Kepler-438b</span> Super-Earth orbiting Kepler-438

Kepler-438b is a confirmed near-Earth-sized exoplanet. It is likely rocky. It orbits on the inner edge of the habitable zone of a red dwarf, Kepler-438, about 460.2 light-years from Earth in the constellation Lyra. It receives 1.4 times our solar flux. The planet was discovered by NASA's Kepler spacecraft using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured. NASA announced the confirmation of the exoplanet on 6 January 2015.

<span class="mw-page-title-main">Nexus for Exoplanet System Science</span> Dedicated to the search for life on exoplanets

The Nexus for Exoplanet System Science (NExSS) initiative is a National Aeronautics and Space Administration (NASA) virtual institute designed to foster interdisciplinary collaboration in the search for life on exoplanets. Led by the Ames Research Center, the NASA Exoplanet Science Institute, and the Goddard Institute for Space Studies, NExSS will help organize the search for life on exoplanets from participating research teams and acquire new knowledge about exoplanets and extrasolar planetary systems.

<span class="mw-page-title-main">Tabetha S. Boyajian</span> American astronomer

Tabetha "Tabby" Suzanne Boyajian is an American astronomer and associate professor at Louisiana State University. She works in the fields of stellar interferometry, stellar spectroscopy, exoplanet research, and high angular resolution astronomy, all particularly at optical and infrared wavelengths. Boyajian was the lead author of the September 2015 paper "Where's the Flux?", which investigated the highly unusual light curve of KIC 8462852; the star is colloquially known as Tabby's Star in her honor.

<span class="mw-page-title-main">Stephen R. Kane</span>

Stephen Kane is a full professor of astronomy and planetary astrophysics at the University of California, Riverside who specializes in exoplanetary science. His work covers a broad range of exoplanet detection methods, including the microlensing, transit, radial velocity, and imaging techniques. He is a leading expert on the topic of planetary habitability and the habitable zone of planetary systems. He has published hundreds of peer reviewed scientific papers and has discovered/co-discovered several hundred planets orbiting other stars. He is a prolific advocate of interdisciplinarity science and studying Venus as an exoplanet analog.

Kepler-1625 is a 14th-magnitude solar-mass star located in the constellation of Cygnus approximately 7,200 light-years away. Its mass is within 5% of that of the Sun, but its radius is approximately 70% larger reflecting its more evolved state. A candidate gas giant exoplanet was detected by the Kepler Mission around the star in 2015, which was later validated as a real planet to >99% confidence in 2016. In 2018, the Hunt for Exomoons with Kepler project reported evidence for a Neptune-sized exomoon around this planet, based on observations from NASA’s Kepler mission and the Hubble Space Telescope. Subsequently, the evidence for and reality of this exomoon candidate has been subject to debate.

Kepler-1625b is a super-Jupiter exoplanet orbiting the Sun-like star Kepler-1625 about 2,500 parsecs away in the constellation of Cygnus. The large gas giant is approximately the same radius as Jupiter, and orbits its star every 287.4 days. In 2017, hints of a Neptune-sized exomoon in orbit of the planet was found using photometric observations collected by the Kepler Mission. Further evidence for a Neptunian moon was found the following year using the Hubble Space Telescope, where two independent lines of evidence constrained the mass and radius to be Neptune-like. The mass-signature has been independently recovered by two other teams. However, the radius-signature was independently recovered by one of the teams but not the other. The original discovery team later showed that this latter study appears affected by systematic error sources that may influence their findings.

<span class="mw-page-title-main">Kepler-1625b I</span> Possible exomoon orbiting Kepler-1625b in the constellation of Cygnus

Kepler-1625b I is a possible moon of exoplanet Kepler-1625b, which may be the first exomoon ever discovered, and was first indicated after preliminary observations by the Kepler Space Telescope. A more thorough observing campaign by the Hubble Space Telescope took place in October 2017, ultimately leading to a discovery paper published in Science Advances in early October 2018. Studies related to the discovery of this moon suggest that the host exoplanet is up to several Jupiter masses in size, and the moon is thought to be approximately the mass of Neptune. Like several moons in the Solar System, the large exomoon would theoretically be able to host its own moon, called a subsatellite, in a stable orbit, although no evidence for such a subsatellite has been found.

Kepler-1708b is a Jupiter-sized exoplanet orbiting the Sun-like star Kepler-1708, located in the constellation of Cygnus approximately 5,600 light years away from Earth. It was first detected in 2011 by NASA's Kepler mission using the transit method, but was not identified as a candidate planet until 2019. In 2021, a candidate Neptune-sized exomoon in orbit around Kepler-1708b was found by astronomer David Kipping and colleagues in an analysis using Kepler transit data. However, subsequent research has raised discrepancies about the possible existence of an exomoon, similar to that of Kepler-1625b, but even more recent research still find the existence of an exomoon likely.

Kepler-1513 is a main-sequence star about 1,150 light-years away in the constellation Lyra. It has a late-G or early-K spectral type, and it hosts at least one, and likely two, exoplanets.

References

  1. "Astronomer David Kipping Named Sloan Research Fellow". Columbia News.
  2. Plait, Phil (18 August 2016). "So What Exactly Is an "Alien Megastructure"?". slate.com.
  3. Ciaccia, Chris (19 May 2020). "Astronomer puts odds on extraterrestrial life existing: 'Universe teeming with life ... the favored bet'". Fox News.
  4. "European Week of Astronomy and Space Sciences - Press Releases". Star-www.herts.ac.uk. Retrieved 25 January 2014.
  5. "Why we're finally on the cusp of finding exomoons around other planets" . New Scientist.
  6. Kipping, David (11 March 2019). "THE HALO DRIVE: FUEL-FREE RELATIVISTIC PROPULSION OF LARGE MASSES VIA RECYCLED BOOMERANG PHOTONS". arXiv: 1903.03423 [gr-qc].