Digital physics

Last updated

Digital physics is a speculative idea suggesting that the universe can be conceived of as a vast, digital computation device, or as the output of a deterministic or probabilistic computer program. [1] The hypothesis that the universe is a digital computer was proposed by Konrad Zuse in his 1969 book Rechnender Raum [2] ("Calculating-space"). [3] The term digital physics was coined in 1978 by Edward Fredkin, [4] who later came to prefer the term digital philosophy. [5] Fredkin encouraged the establishment of a digital physics group at what was then MIT's Laboratory for Computer Science, with Tommaso Toffoli and Norman Margolus playing key roles.

Contents

Digital physics posits that there exists, at least in principle, a program for a universal computer that computes the evolution of the universe. The computer could be, for example, a huge cellular automaton. [1] [6] It is deeply connected to the concept of information theory, particularly the idea that the universe's fundamental building blocks might be bits of information rather than traditional particles or fields.

However, extant models of digital physics face challenges, particularly in reconciling with several continuous symmetries [7] in physical laws, e.g., rotational symmetry, translational symmetry, Lorentz symmetry, and the Lie group gauge invariance of Yang–Mills theories, all of which are central to current physical theories. Moreover, existing models of digital physics violate various well-established features of quantum physics, as they belong to a class of theories involving local hidden variables. These models have so far been disqualified experimentally by physicists using Bell's theorem. [8] [9]

Despite these challenges, covariant discrete theories can be formulated that preserve the aforementioned symmetries. [10] [11]

See also

Related Research Articles

<span class="mw-page-title-main">Konrad Zuse</span> German computer scientist and engineer (1910–1995)

Konrad Ernst Otto Zuse was a German civil engineer, pioneering computer scientist, inventor and businessman. His greatest achievement was the world's first programmable computer; the functional program-controlled Turing-complete Z3 became operational in May 1941. Thanks to this machine and its predecessors, Zuse is regarded by some as the inventor and father of the modern computer.

<span class="mw-page-title-main">Multiverse</span> Hypothetical group of multiple universes

The multiverse is the hypothetical set of all universes. Together, these universes are presumed to comprise everything that exists: the entirety of space, time, matter, energy, information, and the physical laws and constants that describe them. The different universes within the multiverse are called "parallel universes", "flat universes", "other universes", "alternate universes", "multiple universes", "plane universes", "parent and child universes", "many universes", or "many worlds". One common assumption is that the multiverse is a "patchwork quilt of separate universes all bound by the same laws of physics."

<span class="mw-page-title-main">Quantum information</span> Information held in the state of a quantum system

Quantum information is the information of the state of a quantum system. It is the basic entity of study in quantum information theory, and can be manipulated using quantum information processing techniques. Quantum information refers to both the technical definition in terms of Von Neumann entropy and the general computational term.

<span class="mw-page-title-main">Quantum gravity</span> Description of gravity using discrete values

Quantum gravity (QG) is a field of theoretical physics that seeks to describe gravity according to the principles of quantum mechanics. It deals with environments in which neither gravitational nor quantum effects can be ignored, such as in the vicinity of black holes or similar compact astrophysical objects, such as neutron stars, as well as in the early stages of the universe moments after the Big Bang.

<span class="mw-page-title-main">Theory of everything</span> Hypothetical physical concept

A theory of everything (TOE), final theory, ultimate theory, unified field theory, or master theory is a hypothetical, singular, all-encompassing, coherent theoretical framework of physics that fully explains and links together all aspects of the universe. Finding a theory of everything is one of the major unsolved problems in physics.

The de Broglie–Bohm theory, also known as the pilot wave theory, Bohmian mechanics, Bohm's interpretation, and the causal interpretation, is an interpretation of quantum mechanics. It postulates that in addition to the wavefunction, an actual configuration of particles exists, even when unobserved. The evolution over time of the configuration of all particles is defined by a guiding equation. The evolution of the wave function over time is given by the Schrödinger equation. The theory is named after Louis de Broglie (1892–1987) and David Bohm (1917–1992).

In philosophy, the philosophy of physics deals with conceptual and interpretational issues in physics, many of which overlap with research done by certain kinds of theoretical physicists. Historically, philosophers of physics have engaged with questions such as the nature of space, time, matter and the laws that govern their interactions, as well as the epistemological and ontological basis of the theories used by practicing physicists. The discipline draws upon insights from various areas of philosophy, including metaphysics, epistemology, and philosophy of science, while also engaging with the latest developments in theoretical and experimental physics.

Charge, parity, and time reversal symmetry is a fundamental symmetry of physical laws under the simultaneous transformations of charge conjugation (C), parity transformation (P), and time reversal (T). CPT is the only combination of C, P, and T that is observed to be an exact symmetry of nature at the fundamental level. The CPT theorem says that CPT symmetry holds for all physical phenomena, or more precisely, that any Lorentz invariant local quantum field theory with a Hermitian Hamiltonian must have CPT symmetry.

Theoretical computer science is a subfield of computer science and mathematics that focuses on the abstract and mathematical foundations of computation.

<span class="mw-page-title-main">Edward Fredkin</span> American physicist and computer scientist (1934–2023)

Edward Fredkin was an American computer scientist, physicist and businessman who was an early pioneer of digital physics.

Quantum information science is a field that combines the principles of quantum mechanics with information theory to study the processing, analysis, and transmission of information. It covers both theoretical and experimental aspects of quantum physics, including the limits of what can be achieved with quantum information. The term quantum information theory is sometimes used, but it does not include experimental research and can be confused with a subfield of quantum information science that deals with the processing of quantum information.

<i>Calculating Space</i> Book by Konrad Zuse

Calculating Space is Konrad Zuse's 1969 book on automata theory. He proposed that all processes in the universe are computational. This view is known today as the simulation hypothesis, digital philosophy, digital physics or pancomputationalism. Zuse proposed that the universe is being computed by some sort of cellular automaton or other discrete computing machinery, challenging the long-held view that some physical laws are continuous by nature. He focused on cellular automata as a possible substrate of the computation, and pointed out that the classical notions of entropy and its growth do not make sense in deterministically computed universes.

In theoretical physics, a no-go theorem is a theorem that states that a particular situation is not physically possible. This type of theorem imposes boundaries on certain mathematical or physical possibilities via a proof of contradiction.

<span class="mw-page-title-main">Rudolf Haag</span> German physicist

Rudolf Haag was a German theoretical physicist, who mainly dealt with fundamental questions of quantum field theory. He was one of the founders of the modern formulation of quantum field theory and he identified the formal structure in terms of the principle of locality and local observables. He also made important advances in the foundations of quantum statistical mechanics.

In physics and cosmology, the mathematical universe hypothesis (MUH), also known as the ultimate ensemble theory, is a speculative "theory of everything" (TOE) proposed by cosmologist Max Tegmark. According to the hypothesis, the universe is a mathematical object in and of itself. Tegmark extends this idea to hypothesize that all mathematical objects exist, which he describes as a form of Platonism or Modal realism.

<span class="mw-page-title-main">Arthur Jaffe</span> American mathematician

Arthur Michael Jaffe is an American mathematical physicist at Harvard University, where in 1985 he succeeded George Mackey as the Landon T. Clay Professor of Mathematics and Theoretical Science.

In quantum mechanics, superdeterminism is a loophole in Bell's theorem. By postulating that all systems being measured are correlated with the choices of which measurements to make on them, the assumptions of the theorem are no longer fulfilled. A hidden variables theory which is superdeterministic can thus fulfill Bell's notion of local causality and still violate the inequalities derived from Bell's theorem. This makes it possible to construct a local hidden-variable theory that reproduces the predictions of quantum mechanics, for which a few toy models have been proposed. In addition to being deterministic, superdeterministic models also postulate correlations between the state that is measured and the measurement setting.

Gennadi Sardanashvily was a theoretical physicist, a principal research scientist of Moscow State University.

Norman H. Margolus is a Canadian-American physicist and computer scientist, known for his work on cellular automata and reversible computing. He is a research affiliate with the Computer Science and Artificial Intelligence Laboratory at the Massachusetts Institute of Technology.

In theoretical physics, the problem of time is a conceptual conflict between general relativity and quantum mechanics in that quantum mechanics regards the flow of time as universal and absolute, whereas general relativity regards the flow of time as malleable and relative. This problem raises the question of what time really is in a physical sense and whether it is truly a real, distinct phenomenon. It also involves the related question of why time seems to flow in a single direction, despite the fact that no known physical laws at the microscopic level seem to require a single direction.

References

  1. 1 2 Schmidhuber, Jürgen (1997), Freksa, Christian; Jantzen, Matthias; Valk, Rüdiger (eds.), "A computer scientist's view of life, the universe, and everything", Foundations of Computer Science: Potential — Theory — Cognition, Lecture Notes in Computer Science, vol. 1337, Berlin, Heidelberg: Springer, pp. 201–208, arXiv: quant-ph/9904050 , doi:10.1007/bfb0052088, ISBN   978-3-540-69640-7, S2CID   17830241 , retrieved 2022-05-23
  2. "Das Jahr des rechnenden Raums". blog.hnf.de (in German). Retrieved 2022-05-23.
  3. Zuse, Konrad (1969). Rechnender Raum. Braunschweig: Springer Vieweg. ISBN   978-3-663-02723-2.
  4. 6.895 Digital Physics Lecture Outline, MIT Course Catalog Listing, 1978 (PDF)
  5. "Digital Philosophy | A New Way of Thinking About Physics". digitalphilosophy.org. Archived from the original on 2021-01-26.
  6. Zuse, Konrad, 1967, Elektronische Datenverarbeitung vol 8., pages 336–344
  7. Fritz, Tobias (June 2013). "Velocity polytopes of periodic graphs and a no-go theorem for digital physics". Discrete Mathematics. 313 (12): 1289–1301. arXiv: 1109.1963 . doi: 10.1016/j.disc.2013.02.010 .
  8. Aaronson, Scott (2014). "Quantum randomness: if there's no predeterminism in quantum mechanics, can it output numbers that truly have no pattern?". American Scientist. 102 (4): 266–271. doi: 10.1511/2014.109.266 .
  9. Jaeger, Gregg (2018). "Clockwork Rebooted: Is the Universe a Computer?". Quantum Foundations, Probability and Information. STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health. pp. 71–91. doi:10.1007/978-3-319-74971-6_8. ISBN   978-3-319-74970-9.
  10. D'Ambrosio, Fabio (Feb 2019). "A Noether Theorem for discrete Covariant Mechanics" (PDF). arXiv: 1902.08997 .
  11. Grimmer, Daniel (May 2022). "A Discrete Analog of General Covariance -- Part 2: Despite what you've heard, a perfectly Lorentzian lattice theory" (PDF). arXiv: 2205.07701 .

Further reading