Dimethyl malonate

Last updated
Dimethyl malonate [1]
Dimethyl malonate.png
Dimethyl malonate 3D ball.png
Names
Preferred IUPAC name
Dimethyl propanedioate
Other names
Malonic acid dimethyl ester
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.003.271 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C5H8O4/c1-8-4(6)3-5(7)9-2/h3H2,1-2H3 Yes check.svgY
    Key: BEPAFCGSDWSTEL-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C5H8O4/c1-8-4(6)3-5(7)9-2/h3H2,1-2H3
    Key: BEPAFCGSDWSTEL-UHFFFAOYAJ
  • COC(=O)CC(=O)OC
Properties
C5H8O4
Molar mass 132.115 g·mol−1
AppearanceColorless liquid
Density 1.154
Melting point −62 °C (−80 °F; 211 K)
Boiling point 180 to 181 °C (356 to 358 °F; 453 to 454 K)
Slightly soluble
-69.69·10−6 cm3/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Dimethyl malonate is a diester derivative of malonic acid. It is a common reagent for organic synthesis used, for example, as a precursor for barbituric acid. It is also used in the malonic ester synthesis. It can be synthesized from dimethoxymethane and carbon monoxide. [2]

Dimethyl malonate is used extensively in the fragrance industry as a raw material in the synthesis of jasmonates. For example, methyl dihydrojasmonate is synthesized from cyclopentanone, pentanal and dimethyl malonate. [3] Hedione is used in almost all fine fragrances and is found in Christian Dior's Eau Sauvage and "Diorella", Hermes' "Voyage d'Hermes Parfum", Calvin Klein's "CKOne", Chanel's "Chanel No. 19", and Mark Jacob's "Blush", among others. As of 2009, Hedione was Firmenich's top selling compound by volume. [4]

Hebei Chengxin is the world's largest producer of dimethyl malonate by volume and uses a chloroacetic acid/sodium cyanide process developed in the 1940s. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Ester</span> Compound derived from an acid

In chemistry, an ester is a compound derived from an acid in which the hydrogen atom (H) of at least one acidic hydroxyl group of that acid is replaced by an organyl group. Analogues derived from oxygen replaced by other chalcogens belong to the ester category as well. According to some authors, organyl derivatives of acidic hydrogen of other acids are esters as well, but not according to the IUPAC.

<span class="mw-page-title-main">Ketene</span> Organic compound of the form >C=C=O

In organic chemistry, a ketene is an organic compound of the form RR'C=C=O, where R and R' are two arbitrary monovalent chemical groups. The name may also refer to the specific compound ethenone H2C=C=O, the simplest ketene.

Transesterification is the process of exchanging the organic functional group R″ of an ester with the organic group R' of an alcohol. These reactions are often catalyzed by the addition of an acid or base catalyst. Strong acids catalyze the reaction by donating a proton to the carbonyl group, thus making it a more potent electrophile. Bases catalyze the reaction by removing a proton from the alcohol, thus making it more nucleophilic. The reaction can also be accomplished with the help of other enzymes, particularly lipases.

<span class="mw-page-title-main">Malonic acid</span> Carboxylic acid with chemical formula CH2(COOH)2

Malonic acid (IUPAC systematic name: propanedioic acid) is a dicarboxylic acid with structure CH2(COOH)2. The ionized form of malonic acid, as well as its esters and salts, are known as malonates. For example, diethyl malonate is malonic acid's diethyl ester. The name originates from the Greek word μᾶλον (malon) meaning 'apple'.

<span class="mw-page-title-main">Diethyl malonate</span> Chemical compound

Diethyl malonate, also known as DEM, is the diethyl ester of malonic acid. It occurs naturally in grapes and strawberries as a colourless liquid with an apple-like odour, and is used in perfumes. It is also used to synthesize other compounds such as barbiturates, artificial flavourings, vitamin B1, and vitamin B6.

<span class="mw-page-title-main">Michael addition reaction</span> Reaction in organic chemistry

In organic chemistry, the Michael reaction or Michael 1,4 addition is a reaction between a Michael donor and a Michael acceptor to produce a Michael adduct by creating a carbon-carbon bond at the acceptor's β-carbon. It belongs to the larger class of conjugate additions and is widely used for the mild formation of carbon-carbon bonds.

In organic chemistry, the Knoevenagel condensation reaction is a type of chemical reaction named after German chemist Emil Knoevenagel. It is a modification of the aldol condensation.

<span class="mw-page-title-main">Carbon suboxide</span> Organic compound with structure O=C=C=C=O

Carbon suboxide, or tricarbon dioxide, is an organic, oxygen-containing chemical compound with formula C3O2 and structure O=C=C=C=O. Its four cumulative double bonds make it a cumulene. It is one of the stable members of the series of linear oxocarbons O=Cn=O, which also includes carbon dioxide and pentacarbon dioxide. Although if carefully purified it can exist at room temperature in the dark without decomposing, it will polymerize under certain conditions.

<span class="mw-page-title-main">Malonyl-CoA</span> Chemical compound

Malonyl-CoA is a coenzyme A derivative of malonic acid.

<span class="mw-page-title-main">Meldrum's acid</span> Chemical compound

Meldrum's acid or 2,2-dimethyl-1,3-dioxane-4,6-dione is an organic compound with formula C6H8O4. Its molecule has a heterocyclic core with four carbon and two oxygen atoms; the formula can also be written as [−O−(C 2)−O−(C=O)−(CH2)−(C=O)−].

<span class="mw-page-title-main">Ethyl acetoacetate</span> Chemical compound

The organic compound ethyl acetoacetate (EAA) is the ethyl ester of acetoacetic acid. It is a colorless liquid. It is widely used as a chemical intermediate in the production of a wide variety of compounds. It is used as a flavoring for food.

The malonic ester synthesis is a chemical reaction where diethyl malonate or another ester of malonic acid is alkylated at the carbon alpha to both carbonyl groups, and then converted to a substituted acetic acid.

<span class="mw-page-title-main">Dimethyl oxalate</span> Chemical compound

Dimethyl oxalate is an organic compound with the formula (CO2CH3)2 or (CH3)2C2O4. It is the dimethyl ester of oxalic acid. Dimethyl oxalate is a colorless or white solid that is soluble in water.

In chemistry, carbonylation refers to reactions that introduce carbon monoxide (CO) into organic and inorganic substrates. Carbon monoxide is abundantly available and conveniently reactive, so it is widely used as a reactant in industrial chemistry. The term carbonylation also refers to oxidation of protein side chains.

In organic chemistry, a methylene bridge, methylene spacer, or methanediyl group is any part of a molecule with formula −CH2; namely, a carbon atom bound to two hydrogen atoms and connected by single bonds to two other distinct atoms in the rest of the molecule. It is the repeating unit in the skeleton of the unbranched alkanes.

Ethyl octanoate, also known as ethyl caprylate, is a fatty acid ester formed from caprylic acid and ethanol. A colorless liquid at room temperature, it has the semi-developed formula of CH3(CH2)6COOCH2CH3, and is used in food industries as a flavoring and in the perfume industry as a scent additive. It is present in many fruits and alcoholic beverages, and has a strong odor of fruit and flowers. It is used in the creation of synthetic fruity scents.

<span class="mw-page-title-main">Ethyl cyanoacetate</span> Chemical compound

Ethyl cyanoacetate is an organic compound that contains a carboxylate ester and a nitrile. It is a colourless liquid with a pleasant odor. This material is useful as a starting material for synthesis due to its variety of functional groups and chemical reactivity.

<span class="mw-page-title-main">Malonyl chloride</span> Chemical compound

Malonyl chloride is the organic compound with the formula CH2(COCl)2. It is the acyl chloride derivative of malonic acid. It is a colorless liquid although samples are often deeply colored owing to impurities. The compound degrades at room temperature after a few days. It used as a reagent in organic synthesis.

<span class="mw-page-title-main">Diethyl oxomalonate</span> Chemical compound

Diethyl oxomalonate is the diethyl ester of mesoxalic acid (ketomalonic acid), the simplest oxodicarboxylic acid and thus the first member (n = 0) of a homologous series HOOC–CO–(CH2)n–COOH with the higher homologues oxalacetic acid (n = 1), α-ketoglutaric acid (n = 2) and α-ketoadipic acid (n = 3) (the latter a metabolite of the amino acid lysine). Diethyl oxomalonate reacts because of its highly polarized keto group as electrophile in addition reactions and is a highly active reactant in pericyclic reactions such as the Diels-Alder reactions, cycloadditions or ene reactions. At humid air, mesoxalic acid diethyl ester reacts with water to give diethyl mesoxalate hydrate and the green-yellow oil are spontaneously converted to white crystals.

<span class="mw-page-title-main">Diethyl acetamidomalonate</span> Chemical compound

Diethyl acetamidomalonate (DEAM) is a derivative of malonic acid diethyl ester. Formally, it is derived through the acetylation of ester from the unstable aminomalonic acid. DEAM serves as a starting material for racemates including both, natural and unnatural α-amino acids or hydroxycarboxylic acids. It is also usable as a precursor in pharmaceutical formulations, particularly in the cases of active ingredients like fingolimod, which is used to treat multiple sclerosis.

References

  1. Merck Index, 11th Edition, 6009.
  2. R. A. Sheldon (1983), Chemicals from Synthesis Gas: Catalytic Reactions of CO and (in German), Springer, p. 207, ISBN   902771489-4
  3. Schaefer, Bernd (2014). Natural Products in the Chemical Industry. Springer. p. 91–92. ISBN   978-3-642-54461-3.
  4. Davies, E. (2009). "The sweet scent of success" (PDF). Chemistry World: 40–44.
  5. Stoesser, WC. "Preparation of malonic esters," US Patent 2337858