Dimethylmagnesium

Last updated
Dimethylmagnesium
Me2Mg.png
Names
IUPAC name
Dimethylmagnesium
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
UNII
  • InChI=1S/2CH3.Mg/h2*1H3; X mark.svgN
    Key: KZLUHGRPVSRSHI-UHFFFAOYSA-N X mark.svgN
  • C[Mg]C
Properties
C2H6Mg
Molar mass 54.375 g·mol−1
Density 0.96 g/cm3
Reacts
Related compounds
Related compounds
Dibutylmagnesium
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Dimethylmagnesium is an organomagnesium compound. It is a white pyrophoric solid. [1] [2] Dimethylmagnesium is used in the synthesis of organometallic compounds.

Contents

Preparation

Like other dialkylmagnesium compounds, dimethylmagnesium is prepared by adding dioxane to a solution of methylmagnesium halide: [3]

2 CH3MgX + 2 dioxane (CH3)2Mg + MgX2(μ-dioxane)2

In such procedures, the dimethylmagnesium exists as the ether adduct, not the polymer. [4]

Addition of 1,4-dioxane causes precipitation of solid MgX2(μ-dioxane)2, a coordination polymer. [4] This precipitation drives the Schlenk equilibrium toward (CH3)2Mg. Related methods have been applied to other dialkylmagnesium compounds. [3]

Dimethylmagnesium can also be prepared by combining dimethylmercury and magnesium. [5] [6]

Properties

The structure of this compound has been determined by X-ray crystallography. The material is a polymer with the same connectivity as silicon disulfide, featuring tetrahedral magnesium centres, each surrounded by bridging methyl groups. The Mg-C distances are 224 pm. [7] Dimethylberyllium adopts the same structure. [8]


Related Research Articles

<span class="mw-page-title-main">1,4-Dioxane</span> Chemical compound

1,4-Dioxane is a heterocyclic organic compound, classified as an ether. It is a colorless liquid with a faint sweet odor similar to that of diethyl ether. The compound is often called simply dioxane because the other dioxane isomers are rarely encountered.

<span class="mw-page-title-main">Organotin chemistry</span> Branch of organic chemistry

Organotin compounds or stannanes are chemical compounds based on tin with hydrocarbon substituents. Organotin chemistry is part of the wider field of organometallic chemistry. The first organotin compound was diethyltin diiodide, discovered by Edward Frankland in 1849. The area grew rapidly in the 1900s, especially after the discovery of the Grignard reagents, which are useful for producing Sn–C bonds. The area remains rich with many applications in industry and continuing activity in the research laboratory.

<span class="mw-page-title-main">Copper(I) iodide</span> Chemical compound

Copper(I) iodide is the inorganic compound with the formula CuI. It is also known as cuprous iodide. It is useful in a variety of applications ranging from organic synthesis to cloud seeding.

<span class="mw-page-title-main">Titanocene dichloride</span> Chemical compound

Titanocene dichloride is the organotitanium compound with the formula (η5-C5H5)2TiCl2, commonly abbreviated as Cp2TiCl2. This metallocene is a common reagent in organometallic and organic synthesis. It exists as a bright red solid that slowly hydrolyzes in air. It shows antitumour activity and was the first non-platinum complex to undergo clinical trials as a chemotherapy drug.

The Schlenk equilibrium, named after its discoverer Wilhelm Schlenk, is a chemical equilibrium taking place in solutions of Grignard reagents and Hauser bases

<span class="mw-page-title-main">Grignard reagent</span> Organometallic compounds used in organic synthesis

A Grignard reagent or Grignard compound is a chemical compound with the general formula R−Mg−X, where X is a halogen and R is an organic group, normally an alkyl or aryl. Two typical examples are methylmagnesium chloride Cl−Mg−CH3 and phenylmagnesium bromide (C6H5)−Mg−Br. They are a subclass of the organomagnesium compounds.

<span class="mw-page-title-main">Methyllithium</span> Chemical compound

Methyllithium is the simplest organolithium reagent with the empirical formula CH3Li. This s-block organometallic compound adopts an oligomeric structure both in solution and in the solid state. This highly reactive compound, invariably used in solution with an ether as the solvent, is a reagent in organic synthesis as well as organometallic chemistry. Operations involving methyllithium require anhydrous conditions, because the compound is highly reactive toward water. Oxygen and carbon dioxide are also incompatible with MeLi. Methyllithium is usually not prepared, but purchased as a solution in various ethers.

<span class="mw-page-title-main">Disodium tetracarbonylferrate</span> Chemical compound

Disodium tetracarbonylferrate is the organoiron compound with the formula Na2[Fe(CO)4]. It is always used as a solvate, e.g., with tetrahydrofuran or dimethoxyethane, which bind to the sodium cation. An oxygen-sensitive colourless solid, it is a reagent in organometallic and organic chemical research. The dioxane solvated sodium salt is known as Collman's reagent, in recognition of James P. Collman, an early popularizer of its use.

<span class="mw-page-title-main">Magnesium bromide</span> Chemical compound

Magnesium bromide is a chemical compound of magnesium and bromine, with the chemical formula MgBr2. It is white and deliquescent crystalline solid. It is often used as a mild sedative and as an anticonvulsant for treatment of nervous disorders. It is water-soluble and somewhat soluble in alcohol. It can be found naturally in small amounts in some minerals such as: bischofite and carnallite, and in sea water, such as that of the Dead Sea.

<span class="mw-page-title-main">Group 2 organometallic chemistry</span>

Group 2 organometallic chemistry refers to the chemistry of compounds containing carbon bonded to any group 2 element. By far the most common group 2 organometallic compounds are the magnesium-containing Grignard reagents which are widely used in organic chemistry. Other organmetallic group 2 compounds are rare and are typically limited to academic interests.

<span class="mw-page-title-main">Organonickel chemistry</span>

Organonickel chemistry is a branch of organometallic chemistry that deals with organic compounds featuring nickel-carbon bonds. They are used as a catalyst, as a building block in organic chemistry and in chemical vapor deposition. Organonickel compounds are also short-lived intermediates in organic reactions. The first organonickel compound was nickel tetracarbonyl Ni(CO)4, reported in 1890 and quickly applied in the Mond process for nickel purification. Organonickel complexes are prominent in numerous industrial processes including carbonylations, hydrocyanation, and the Shell higher olefin process.

Methylmagnesium chloride is an organometallic compound with the general formula CH3MgCl. This highly flammable, colorless, and moisture sensitive material is the simplest Grignard reagent and is commercially available, usually as a solution in tetrahydrofuran.

<span class="mw-page-title-main">Tetramethyltin</span> Chemical compound

Tetramethyltin is an organometallic compound with the formula (CH3)4Sn. This liquid, one of the simplest organotin compounds, is useful for transition-metal mediated conversion of acid chlorides to methyl ketones and aryl halides to aryl methyl ketones. It is volatile and toxic, so care should be taken when using it in the laboratory.

Organomanganese chemistry is the chemistry of organometallic compounds containing a carbon to manganese chemical bond. In a 2009 review, Cahiez et al. argued that as manganese is cheap and benign, organomanganese compounds have potential as chemical reagents, although currently they are not widely used as such despite extensive research.

Organosodium chemistry is the chemistry of organometallic compounds containing a carbon to sodium chemical bond. The application of organosodium compounds in chemistry is limited in part due to competition from organolithium compounds, which are commercially available and exhibit more convenient reactivity.

<span class="mw-page-title-main">Organomolybdenum chemistry</span>

Organomolybdenum chemistry is the chemistry of chemical compounds with Mo-C bonds. The heavier group 6 elements molybdenum and tungsten form organometallic compounds similar to those in organochromium chemistry but higher oxidation states tend to be more common.

Hauser bases, also called magnesium amide bases, are magnesium compounds used in organic chemistry as bases for metalation reactions. These compounds were first described by Charles R. Hauser in 1947. Compared with organolithium reagents, the magnesium compounds have more covalent, and therefore less reactive, metal-ligand bonds. Consequently, they display a higher degree of functional group tolerance and a much greater chemoselectivity. Generally, Hauser bases are used at room temperature while reactions with organolithium reagents are performed at low temperatures, commonly at −78 °C.

<span class="mw-page-title-main">Tetramesityldiiron</span> Chemical compound

Tetramesityldiiron is an organoiron compound with the formula Fe2(C6H2(CH3)3)4. It is a red, air-sensitive solid that is used as a precursor to other iron complexes. It adopts a centrosymmetric structure. The complex is a Lewis acid, forming monomeric adducts, e.g. Fe(C6H2(CH3)3)2pyridine2. The complex is prepared by treating ferrous halides with the Grignard reagent formed from mesityl bromide:

In organometallic chemistry, metal–halogen exchange is a fundamental reaction that converts a organic halide into an organometallic product. The reaction commonly involves the use of electropositive metals and organochlorides, bromides, and iodides. Particularly well-developed is the use of metal–halogen exchange for the preparation of organolithium compounds.

<span class="mw-page-title-main">(Trimethylsilyl)methyllithium</span> Chemical compound

(Trimethylsilyl)methyllithium is classified both as an organolithium compound and an organosilicon compound. It has the empirical formula LiCH2Si(CH3)3, often abbreviated LiCH2tms. It crystallizes as the hexagonal prismatic hexamer [LiCH2tms]6, akin to some polymorphs of methyllithium. Many adducts have been characterized including the diethyl ether complexed cubane [Li43-CH2tms)4(Et2O)2] and [Li2(μ-CH2tms)2(tmeda)2].

References

  1. Cope, A. C. (1935). "The Preparation of Dialkylmagnesium Compounds from Grignard Reagents". J. Am. Chem. Soc. 57 (11): 2238–2240. doi:10.1021/ja01314a059.
  2. Anteunis, M. (1962). "Studies of the Grignard Reaction. II. Kinetics of the Reaction of Dimethylmagnesium with Benzophenone and of Methylmagnesium Bromide-Magnesium Bromide with Pinacolone". J. Org. Chem. 27 (2): 596–598. doi:10.1021/jo01049a060.
  3. 1 2 Richard A. Andersen, Geoffrey Wilkinson (1979). "Bis[(Trimethylsilyl)Methyl] Magnesium". Inorg. Synth. 19: 262–265. doi:10.1002/9780470132500.ch61.
  4. 1 2 Fischer, Reinald; Görls, Helmar; Meisinger, Philippe R.; Suxdorf, Regina; Westerhausen, Matthias (2019). "Structure–Solubility Relationship of 1,4‐Dioxane Complexes of Di(hydrocarbyl)magnesium". Chemistry – A European Journal. 25 (55): 12830–12841. doi:10.1002/chem.201903120. PMC   7027550 . PMID   31328293.
  5. Houben-Weyl Methods of Organic Chemistry Vol. XIII/2a, 4th Edition Organometallic Compounds of Group II of the Periodic Table (except mercury) (in German), Georg Thieme Verlag, 2014, p. 215, ISBN   978-3-13-180654-3
  6. Jane E. Macintyre (1994), Dictionary of Organometallic Compounds (in German), CRC Press, p. 2273, ISBN   978-0-412-43060-2
  7. Weiss, E. (1964). "Die Kristallstruktur des Dimethylmagnesiums". J. Organomet. Chem. 2 (4): 314–321. doi:10.1016/S0022-328X(00)82217-2.
  8. Snow, A.I.; Rundle, R.E. (1951). "Structure of Dimethylberyllium". Acta Crystallographica . 4 (4): 348–52. doi:10.1107/S0365110X51001100. hdl: 2027/mdp.39015095081207 .