Dipicolylamine

Last updated
Dipicolylamine
Dipicolylamine.svg
Names
Preferred IUPAC name
1-(Pyridin-2-yl)-N-[(pyridin-2-yl)methyl]methanamine
Other names
Di-(2-picolyl)amine, DPA
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.014.788 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C12H13N3/c1-3-7-14-11(5-1)9-13-10-12-6-2-4-8-15-12/h1-8,13H,9-10H2
    Key: KXZQYLBVMZGIKC-UHFFFAOYSA-N
  • InChI=1/C12H13N3/c1-3-7-14-11(5-1)9-13-10-12-6-2-4-8-15-12/h1-8,13H,9-10H2
    Key: KXZQYLBVMZGIKC-UHFFFAOYAP
  • c1ccnc(c1)CNCc2ccccn2
Properties
C12H13N3
Molar mass 199.25
Appearanceyellow liquid
Density 1.107 g/cm3
Boiling point 139 to 141 °C at 1 mmHg
low
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Dipicolylamine is an organic compound with the formula HN(CH2C5H4N)2. It is a yellow liquid that is soluble in polar organic solvents. The molecule is a secondary amine with two picolyl substituents. The compound is a common tridentate ligand in coordination chemistry. [1] [2]

The compound can be prepared by many methods, alkylation of picolinylamine with picolinyl chloride, deamination of picolinylamine, and reductive amination of picolinyl amine and pyridine-2-carboxaldehyde. It is commonly used to bind to bacteria in purifying mixtures that require separation.

Related Research Articles

<span class="mw-page-title-main">Hydroxylamine</span> Inorganic compound

Hydroxylamine is an inorganic compound with the formula NH2OH. The material is a white crystalline, hygroscopic compound. Hydroxylamine is almost always provided and used as an aqueous solution. It is consumed almost exclusively to produce Nylon-6. It is also an intermediate in biological nitrification. The oxidation of NH3 to hydroxylamine is a step in biological nitrification.

<span class="mw-page-title-main">Zinc chloride</span> Chemical compound

Zinc chloride is the name of inorganic chemical compounds with the formula ZnCl2 and its hydrates. Zinc chlorides, of which nine crystalline forms are known, are colorless or white, and are highly soluble in water. This salt is hygroscopic and even deliquescent. Zinc chloride finds wide application in textile processing, metallurgical fluxes, and chemical synthesis. No mineral with this chemical composition is known aside from the very rare mineral simonkolleite, Zn5(OH)8Cl2·H2O.

Pyrazine is a heterocyclic aromatic organic compound with the chemical formula C4H4N2. It is a symmetrical molecule with point group D2h. Pyrazine is less basic than pyridine, pyridazine and pyrimidine. It is a "deliquescent crystal or wax-like solid with a pungent, sweet, corn-like, nutty odour".

An isocyanide is an organic compound with the functional group –N+≡C. It is the isomer of the related nitrile (–C≡N), hence the prefix is isocyano. The organic fragment is connected to the isocyanide group through the nitrogen atom, not via the carbon. They are used as building blocks for the synthesis of other compounds.

In retrosynthetic analysis, a synthon is a hypothetical unit within a target molecule that represents a potential starting reagent in the retroactive synthesis of that target molecule. The term was coined in 1967 by E. J. Corey. He noted in 1988 that the "word synthon has now come to be used to mean synthetic building block rather than retrosynthetic fragmentation structures". It was noted in 1998 that the phrase did not feature very prominently in Corey's 1981 book The Logic of Chemical Synthesis, as it was not included in the index. Because synthons are charged, when placed into a synthesis a neutral form is found commercially instead of forming and using the potentially very unstable charged synthons.

<span class="mw-page-title-main">Cryptand</span> Cyclic, multidentate ligands adept at encapsulating cations

In chemistry, cryptands are a family of synthetic, bicyclic and polycyclic, multidentate ligands for a variety of cations. The Nobel Prize for Chemistry in 1987 was given to Donald J. Cram, Jean-Marie Lehn, and Charles J. Pedersen for their efforts in discovering and determining uses of cryptands and crown ethers, thus launching the now flourishing field of supramolecular chemistry. The term cryptand implies that this ligand binds substrates in a crypt, interring the guest as in a burial. These molecules are three-dimensional analogues of crown ethers but are more selective and strong as complexes for the guest ions. The resulting complexes are lipophilic.

Pyrrolidine, also known as tetrahydropyrrole, is an organic compound with the molecular formula (CH2)4NH. It is a cyclic secondary amine, also classified as a saturated heterocycle. It is a colourless liquid that is miscible with water and most organic solvents. It has a characteristic odor that has been described as "ammoniacal, fishy, shellfish-like". In addition to pyrrolidine itself, many substituted pyrrolidines are known.

<span class="mw-page-title-main">Tröger's base</span> Chemical compound

Tröger's base is a white solid tetracyclic organic compound. structure and formula of (CH3C6H3NCH2)2CH2. Tröger's base and its analogs are soluble in various organic solvents and strong acidic aqueous solutions due to their protonation.

<span class="mw-page-title-main">Bridging ligand</span> Ligand which connects two or more (usually metal) atoms in a coordination complex

In coordination chemistry, a bridging ligand is a ligand that connects two or more atoms, usually metal ions. The ligand may be atomic or polyatomic. Virtually all complex organic compounds can serve as bridging ligands, so the term is usually restricted to small ligands such as pseudohalides or to ligands that are specifically designed to link two metals.

Carbamic acid, which might also be called aminoformic acid or aminocarboxylic acid, is the chemical compound with the formula H2NCOOH. It can be obtained by the reaction of ammonia NH3 and carbon dioxide CO2 at very low temperatures, which also yields an equal amount of ammonium carbamate [NH4]+[NH2CO2]. The compound is stable only up to about 250 K (−23 °C); at higher temperatures it decomposes into those two gases. The solid apparently consists of dimers, with the two molecules connected by hydrogen bonds between the two carboxyl groups –COOH.

The reduction of nitro compounds are chemical reactions of wide interest in organic chemistry. The conversion can be effected by many reagents. The nitro group was one of the first functional groups to be reduced. Alkyl and aryl nitro compounds behave differently. Most useful is the reduction of aryl nitro compounds.

<span class="mw-page-title-main">Molecular sensor</span>

A molecular sensor or chemosensor is a molecular structure that is used for sensing of an analyte to produce a detectable change or a signal. The action of a chemosensor, relies on an interaction occurring at the molecular level, usually involves the continuous monitoring of the activity of a chemical species in a given matrix such as solution, air, blood, tissue, waste effluents, drinking water, etc. The application of chemosensors is referred to as chemosensing, which is a form of molecular recognition. All chemosensors are designed to contain a signalling moiety and a recognition moiety, that is connected either directly to each other or through a some kind of connector or a spacer. The signalling is often optically based electromagnetic radiation, giving rise to changes in either the ultraviolet and visible absorption or the emission properties of the sensors. Chemosensors may also be electrochemically based. Small molecule sensors are related to chemosensors. These are traditionally, however, considered as being structurally simple molecules and reflect the need to form chelating molecules for complexing ions in analytical chemistry. Chemosensors are synthetic analogues of biosensors, the difference being that biosensors incorporate biological receptors such as antibodies, aptamers or large biopolymers.

Compounds of zinc are chemical compounds containing the element zinc which is a member of the group 12 of the periodic table. The oxidation state of zinc in most compounds is the group oxidation state of +2. Zinc may be classified as a post-transition main group element with zinc(II). Zinc compounds are noteworthy for their nondescript behavior, they are generally colorless, do not readily engage in redox reactions, and generally adopt symmetrical structures.

Cyclodiphosphazanes are saturated four membered P2N2 ring systems and one of the major classes of cyclic phosphazene compounds. Bis(chloro)cyclodiphosphazanes, (cis-[ClP(μ-NR)]2) are important starting compounds for synthesizing a variety of cyclodiphosphazane derivatives by nucleophilic substitution reactions; are prepared by reaction of phosphorus trichloride (PCl3) with a primary amine (RNH2) or amine hydrochlorides (RNH3Cl).

<span class="mw-page-title-main">Birch reduction</span> Organic reaction used to convert arenes to cyclohexadienes

The Birch reduction is an organic reaction that is used to convert arenes to cyclohexadienes. The reaction is named after the Australian chemist Arthur Birch and involves the organic reduction of aromatic rings in an amine solvent with an alkali metal and a proton source. Unlike catalytic hydrogenation, Birch reduction does not reduce the aromatic ring all the way to a cyclohexane.

Metal acetylacetonates are coordination complexes derived from the acetylacetonate anion (CH
3
COCHCOCH
3
) and metal ions, usually transition metals. The bidentate ligand acetylacetonate is often abbreviated acac. Typically both oxygen atoms bind to the metal to form a six-membered chelate ring. The simplest complexes have the formula M(acac)3 and M(acac)2. Mixed-ligand complexes, e.g. VO(acac)2, are also numerous. Variations of acetylacetonate have also been developed with myriad substituents in place of methyl (RCOCHCOR′). Many such complexes are soluble in organic solvents, in contrast to the related metal halides. Because of these properties, acac complexes are sometimes used as catalyst precursors and reagents. Applications include their use as NMR "shift reagents" and as catalysts for organic synthesis, and precursors to industrial hydroformylation catalysts. C
5
H
7
O
2
in some cases also binds to metals through the central carbon atom; this bonding mode is more common for the third-row transition metals such as platinum(II) and iridium(III).

<span class="mw-page-title-main">Squaramide</span> Chemical compound

Squaramide is the organic compound with the formula O2C4(NH2)2. Not an amide in the usual sense, it is a derivative of squaric acid wherein two OH centers are replaced by NH2. Squaramides refer to a large class of derivatives wherein some of the H's are replaced by organic substituents. Exploiting their rigid planar structures, these compounds are of interest as hydrogen-bond donors in supramolecular chemistry and organocatalysis. Squaramides exhibit 10-50x greater affinity for halides than do thioureas.

<span class="mw-page-title-main">Barium manganate</span> Chemical compound

Barium manganate is an inorganic compound with the formula BaMnO4. It is used as an oxidant in organic chemistry. It belongs to a class of compounds known as manganates in which the manganese resides in a +6 oxidation state. Manganate should not to be confused with permanganate which contains manganese(VII). Barium manganate is a powerful oxidant, popular in organic synthesis and can be used in a wide variety of oxidation reactions.

<span class="mw-page-title-main">2,2'-Dipyridylamine</span> Chemical compound

2,2′-Dipyridylamine is an organic compound with the formula (C5H4N)2NH. It consists of a pair of 2-pyridyl groups (C5H4N) linked to a secondary amine. The compound forms a range of coordination complexes. Its conjugate base, 2,2′-dipyridylamide, forms extended metal atom chains.

Sulfidogermanates or thiogermanates are chemical compounds containing anions with sulfur atoms bound to germanium. They are in the class of chalcogenidotetrelates. Related compounds include thiosilicates, thiostannates, selenidogermanates, telluridogermanates and selenidostannates.

References

  1. Sakamoto, Takashi; Ojida, Akio; Hamachi, Itaru"Molecular recognition, fluorescence sensing, and biological assay of phosphate anion derivatives using artificial Zn(II)-Dpa complexes" Chemical Communications 2009, pp.141-152. doi : 10.1039/B812374H
  2. Huy Tien Ngo, Xuejian Liu, Katrina A. Jolliffe "Anion recognition and sensing with Zn(II)–dipicolylamine complexes" Chem. Soc. Rev., 2012,41, 4928-4965. doi : 10.1039/C2CS35087D