Directional solidification

Last updated
Directional solidification Directional solidification.svg
Directional solidification
Progressive solidification Progressive solidification.svg
Progressive solidification

Directional solidification(DS) and progressive solidification are types of solidification within castings. Directional solidification is solidification that occurs from farthest end of the casting and works its way towards the sprue. Progressive solidification, also known as parallel solidification, [1] is solidification that starts at the walls of the casting and progresses perpendicularly from that surface. [2]

Contents

Theory -

Most metals and alloys shrink as the material changes from a liquid state to a solid state. Therefore, if liquid material is not available to compensate for this shrinkage a shrinkage defect forms. [3] When progressive solidification dominates over directional solidification a shrinkage defect will form. [2]

Casting solidification conditions.svg

The geometrical shape of the mold cavity has a direct effect on progressive and directional solidification. At the end of tunnel-type geometries, divergent heat flow occurs, which causes that area of the casting to cool faster than surrounding areas; this is called an end effect. Large cavities do not cool as quickly as surrounding areas because there is less heat flow; this is called a riser effect. Also note that corners can create divergent or convergent (also known as hot spots) heat flow areas. [4]

In order to induce directional solidification chills, risers, insulating sleeves, control of pouring rate, and pouring temperature can be utilized. [5]

Directional solidification can be used as a purification process. Since most impurities will be more soluble in the liquid than in the solid phase during solidification, impurities will be "pushed" by the solidification front, causing much of the finished casting to have a lower concentration of impurities than the feedstock material, while the last solidified metal will be enriched with impurities. This last part of the metal can be scrapped or recycled. The suitability of directional solidification in removing a specific impurity from a certain metal depends on the partition coefficient of the impurity in the metal in question, as described by the Scheil equation. Directional solidification (in zone melting) is frequently employed as a purification step in the production of multicrystalline silicon for solar cells.[ citation needed ]

Microstructural Effects

Directional solidification is the preferred technique for casting high temperature nickel-based superalloys that are used in turbine engines of aircraft. Some microstructural problems such as coarse dendritic structure, long dendrite side branches, and porosity hinder the full potential of single crystal ni-based alloys. [6] This morphology can be understood by looking at the G/V ratio of a solidification where G is the temperature gradient in the melt ahead of the solidifying front and V is the rate of solidification. [7] This ratio must be maintained within a range to ensure single crystal formation with the correct microstructure of the coarse dendrite with side branches. [8] It has been found that increasing the solidification cooling rate further improves the mechanical properties and rupture life of single crystals grown by directional solidification due to refinement of the y’ precipitates. [9]

In directional solidification growths of single crystals, spurious grains nucleate when molten metal flowed into a gap between the mold/seed gap and solidified. [10] This is catastrophic to mechanical properties of Ni-based superalloys such as CMSX4, and can be minimized by keeping the tolerance of <001> from the local surface normal. [11] Additionally, the range of axial orientations in the directional solidification starting block should be minimized in order to successfully grow a single crystal. [12] This is difficult depending on the range of orientations in the DS starter block, and therefore makes orientation control a large area of focus. [13]

In Ti-Al base alloys, the lamellar microstructure exhibits anisotropic properties in the lamellar direction and therefore the kinetics and orientation of its growth are integral to optimizing its mechanical properties. [14] Selecting a directional solidification growth where the lamellar structure is parallel to the growth direction will result in a high strength and ductility. [15] It is even more difficult to precipitate this phase since it is not formed from the liquid and instead from the solid state. [16] The first way to overcome this challenge is by using a seed material, which is properly oriented and that nucleates new lamellae during processing with the same orientation as the original material. [17] It is placed in front of the main bulk of material so that when the melt is solidifying it has a precedent for the correct orientation to follow. [18] If a seed is not used, the other method of achieving the high strength single lamellar phase is to have the lamellar structure oriented along the growth direction. [19] However, this is only successful for a small window of the solidification, as its success from the columnar growth of the beta phase followed by the equiaxed growth of the alpha phase and alloying with boron is compromised by the high thermal gradient of the cooling. [20]

Related Research Articles

<span class="mw-page-title-main">Metallurgy</span> Field of science that studies the physical and chemical behavior of metals

Metallurgy is a domain of materials science and engineering that studies the physical and chemical behavior of metallic elements, their inter-metallic compounds, and their mixtures, which are known as alloys. Metallurgy encompasses both the science and the technology of metals; that is, the way in which science is applied to the production of metals, and the engineering of metal components used in products for both consumers and manufacturers. Metallurgy is distinct from the craft of metalworking. Metalworking relies on metallurgy in a similar manner to how medicine relies on medical science for technical advancement. A specialist practitioner of metallurgy is known as a metallurgist.

<span class="mw-page-title-main">Metal casting</span> Pouring liquid metal into a mold

In metalworking and jewelry making, casting is a process in which a liquid metal is delivered into a mold that contains a negative impression of the intended shape. The metal is poured into the mold through a hollow channel called a sprue. The metal and mold are then cooled, and the metal part is extracted. Casting is most often used for making complex shapes that would be difficult or uneconomical to make by other methods.

<span class="mw-page-title-main">Ingot</span> Piece of relatively pure metal

An ingot is a piece of relatively pure material, usually metal, that is cast into a shape suitable for further processing. In steelmaking, it is the first step among semi-finished casting products. Ingots usually require a second procedure of shaping, such as cold/hot working, cutting, or milling to produce a useful final product. Non-metallic and semiconductor materials prepared in bulk form may also be referred to as ingots, particularly when cast by mold based methods. Precious metal ingots can be used as currency, or as a currency reserve, as with gold bars.

<span class="mw-page-title-main">Crystallite</span> Small crystal which forms under certain conditions

A crystallite is a small or even microscopic crystal which forms, for example, during the cooling of many materials. Crystallites are also referred to as grains.

Aluminium–silicon alloys or Silumin is a general name for a group of lightweight, high-strength aluminium alloys based on an aluminum–silicon system (AlSi) that consist predominantly of aluminum - with silicon as the quantitatively most important alloying element. Pure AlSi alloys cannot be hardened, the commonly used alloys AlSiCu and AlSiMg can be hardened. The hardening mechanism corresponds to that of AlCu and AlMgSi. The rarely used wrought alloys in the 4000 series and the predominantly used cast alloys are standardised in the 40000 series.

<span class="mw-page-title-main">Bridgman–Stockbarger method</span> Method of crystallization

The Bridgman–Stockbarger method, or Bridgman–Stockbarger technique, is named after Harvard physicist Percy Williams Bridgman (1882–1961) and MIT physicist Donald C. Stockbarger (1895–1952). The method includes two similar but distinct techniques primarily used for growing boules, but which can be used for solidifying polycrystalline ingots as well.

<span class="mw-page-title-main">Inconel</span> Austenitic nickel-chromium superalloys

Inconel is a nickel-chromium-based superalloy often utilized in extreme environments where components are subjected to high temperature, pressure or mechanical loads. Inconel alloys are oxidation- and corrosion-resistant, when heated, Inconel forms a thick, stable, passivating oxide layer protecting the surface from further attack. Inconel retains strength over a wide temperature range, attractive for high-temperature applications where aluminum and steel would succumb to creep as a result of thermally-induced crystal vacancies. Inconel's high-temperature strength is developed by solid solution strengthening or precipitation hardening, depending on the alloy.

<span class="mw-page-title-main">Superalloy</span> Alloy with higher durability than normal metals

A superalloy, or high-performance alloy, is an alloy with the ability to operate at a high fraction of its melting point. Key characteristics of a superalloy include mechanical strength, thermal creep deformation resistance, surface stability, and corrosion and oxidation resistance.

<span class="mw-page-title-main">Microstructure</span> Very small scale structure of material

Microstructure is the very small scale structure of a material, defined as the structure of a prepared surface of material as revealed by an optical microscope above 25× magnification. The microstructure of a material can strongly influence physical properties such as strength, toughness, ductility, hardness, corrosion resistance, high/low temperature behaviour or wear resistance. These properties in turn govern the application of these materials in industrial practice.

<span class="mw-page-title-main">Dendrite (metal)</span>

A dendrite in metallurgy is a characteristic tree-like structure of crystals growing as molten metal solidifies, the shape produced by faster growth along energetically favourable crystallographic directions. This dendritic growth has large consequences in regard to material properties.

<span class="mw-page-title-main">Oxygen-free copper</span>

Oxygen-free copper (OFC) or oxygen-free high thermal conductivity (OFHC) copper is a group of wrought high-conductivity copper alloys that have been electrolytically refined to reduce the level of oxygen to 0.001% or below. Oxygen-free copper is a premium grade of copper that has a high level of conductivity and is virtually free from oxygen content. The oxygen content of copper affects its electrical properties and can reduce conductivity.

Titanium aluminide, commonly gamma titanium, is an intermetallic chemical compound. It is lightweight and resistant to oxidation and heat, but has low ductility. The density of γ-TiAl is about 4.0 g/cm3. It finds use in several applications including aircraft, jet engines, sporting equipment and automobiles. The development of TiAl based alloys began circa 1970. The alloys have been used in these applications only since about 2000.

Nickel aluminide typically refers to the one of the two most widely used compounds, Ni3Al or NiAl, but can refer to most aluminides from the Ni-Al system. These alloys are widely used due to their corrosion resistance, low-density and easy production. Ni3Al is of specific interest as the strengthening γ' phase precipitate in nickel-based superalloys allowing for high temperature strength up to 0.7-0.8 of its melting temperature. Meanwhile, NiAl displays excellent properties such as low-density (lower than that of Ni3Al), good thermal conductivity, oxidation resistance and high melting temperature. These properties, make it ideal for special high temperature applications like coatings on blades in gas turbines and jet engines. However, both these alloys do have the disadvantage of being quite brittle at room temperature while Ni3Al remains brittle at high temperatures as well. Although, it has been shown that Ni3Al can be made ductile when manufactured as a single crystal as opposed to polycrystalline. Another application was demonstrated in 2005, when the most abrasion-resistant material was reportedly created by embedding diamonds in a matrix of nickel aluminide.

<span class="mw-page-title-main">Symplectite</span>

A symplectite is a material texture: a micrometre-scale or submicrometre-scale intergrowth of two or more crystals. Symplectites form from the breakdown of unstable phases, and may be composed of minerals, ceramics, or metals. Fundamentally, their formation is the result of slow grain-boundary diffusion relative to interface propagation rate.

In materials science, the yield strength anomaly refers to materials wherein the yield strength increases with temperature. For the majority of materials, the yield strength decreases with increasing temperature. In metals, this decrease in yield strength is due to the thermal activation of dislocation motion, resulting in easier plastic deformation at higher temperatures.

<span class="mw-page-title-main">Centrifugal casting (industrial)</span> Casting technique that is typically used to cast thin-walled cylinders

Centrifugal casting or rotocasting is a casting technique that is typically used to cast thin-walled cylinders. It is typically used to cast materials such as metals, glass, and concrete. A high quality is attainable by control of metallurgy and crystal structure. Unlike most other casting techniques, centrifugal casting is chiefly used to manufacture rotationally symmetric stock materials in standard sizes for further machining, rather than shaped parts tailored to a particular end-use.

Transient liquid phase diffusion bonding (TLPDB) is a joining process that has been applied for bonding many metallic and ceramic systems which cannot be bonded by conventional fusion welding techniques. The bonding process produces joints with a uniform composition profile, tolerant of surface oxides and geometrical defects. The bonding technique has been exploited in a wide range of applications, from the production and repair of turbine engines in the aerospace industry, to nuclear power plants, and in making connections to integrated circuit dies as a part of the microelectronics industry.

<span class="mw-page-title-main">High-entropy alloy</span> Alloys with high proportions of several metals

High-entropy alloys (HEAs) are alloys that are formed by mixing equal or relatively large proportions of (usually) five or more elements. Prior to the synthesis of these substances, typical metal alloys comprised one or two major components with smaller amounts of other elements. For example, additional elements can be added to iron to improve its properties, thereby creating an iron-based alloy, but typically in fairly low proportions, such as the proportions of carbon, manganese, and others in various steels. Hence, high-entropy alloys are a novel class of materials. The term "high-entropy alloys" was coined by Taiwanese scientist Jien-Wei Yeh because the entropy increase of mixing is substantially higher when there is a larger number of elements in the mix, and their proportions are more nearly equal. Some alternative names, such as multi-component alloys, compositionally complex alloys and multi-principal-element alloys are also suggested by other researchers.

Catherine Mary Fiona Rae is a Professor of Superalloys in the Department of Materials at the University of Cambridge. Rae is the Director of the Rolls-Royce UTC in Cambridge. She is known for her expertise in electron microscopy and the behaviour of materials in aerospace applications.

<span class="mw-page-title-main">Precipitate-free zone</span> Region around a material grain boundary free of solid impurities

In materials science, a precipitate-free zone (PFZ) refers to microscopic localized regions around grain boundaries that are free of precipitates. It is a common phenomenon that arises in polycrystalline materials where heterogeneous nucleation of precipitates is the dominant nucleation mechanism. This is because grain boundaries are high-energy surfaces that act as sinks for vacancies, causing regions adjacent to a grain boundary to be devoid of vacancies. As it is energetically favorable for heterogeneous nucleation to occur preferentially around defect-rich sites such as vacancies, nucleation of precipitates is impeded in the vacancy-free regions immediately adjacent to grain boundaries

References

  1. Stefanescu 2008 , p. 67.
  2. 1 2 Chastain 2004 , p. 104.
  3. Kuznetsov, A.V.; Xiong, M. (2002). "Dependence of microporosity formation on the direction of solidification". International Communications in Heat and Mass Transfer. 29 (1): 25–34. doi:10.1016/S0735-1933(01)00321-9.
  4. Stefanescu 2008 , p. 68.
  5. Chastain 2004 , pp. 104–105.
  6. Fu, Geng, Hengzhi, Xingguo (2001). "High rate directional solidification and its application in single crystal superalloys". Science and Technology of Advanced Materials. 2 (1): 197–204. Bibcode:2001STAdM...2..197F. doi: 10.1016/S1468-6996(01)00049-3 .{{cite journal}}: CS1 maint: multiple names: authors list (link)
  7. Fu, Geng, Hengzhi, Xingguo (2001). "High rate directional solidification and its application in single crystal superalloys". Science and Technology of Advanced Materials. 2 (1): 197–204. Bibcode:2001STAdM...2..197F. doi: 10.1016/S1468-6996(01)00049-3 .{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. Fu, Geng, Hengzhi, Xingguo (2001). "High rate directional solidification and its application in single crystal superalloys". Science and Technology of Advanced Materials. 2 (1): 197–204. Bibcode:2001STAdM...2..197F. doi: 10.1016/S1468-6996(01)00049-3 .{{cite journal}}: CS1 maint: multiple names: authors list (link)
  9. Fu, Geng, Hengzhi, Xingguo (2001). "High rate directional solidification and its application in single crystal superalloys". Science and Technology of Advanced Materials. 2 (1): 197–204. Bibcode:2001STAdM...2..197F. doi: 10.1016/S1468-6996(01)00049-3 .{{cite journal}}: CS1 maint: multiple names: authors list (link)
  10. Yamaguchi, M (May 2000). "Directional solidification of TiAl-base alloys". Intermetallics. 8 (5–6): 511–517. doi:10.1016/S0966-9795(99)00157-0 . Retrieved 6 March 2020.
  11. Yamaguchi, M (May 2000). "Directional solidification of TiAl-base alloys". Intermetallics. 8 (5–6): 511–517. doi:10.1016/S0966-9795(99)00157-0 . Retrieved 6 March 2020.
  12. Yamaguchi, M (May 2000). "Directional solidification of TiAl-base alloys". Intermetallics. 8 (5–6): 511–517. doi:10.1016/S0966-9795(99)00157-0 . Retrieved 6 March 2020.
  13. Yamaguchi, M (May 2000). "Directional solidification of TiAl-base alloys". Intermetallics. 8 (5–6): 511–517. doi:10.1016/S0966-9795(99)00157-0 . Retrieved 6 March 2020.
  14. D'Souza, D. (Nov 2000). "Directional and Single-Crystal Solidification of Ni-Base Superalloys: Part I. The Role of Curved Isotherms on Grain Selection" (PDF). Metallurgical and Materials Transactions A. 31A (11): 2877–2886. Bibcode:2000MMTA...31.2877D. doi:10.1007/BF02830351. S2CID   136914987.
  15. D'Souza, D. (Nov 2000). "Directional and Single-Crystal Solidification of Ni-Base Superalloys: Part I. The Role of Curved Isotherms on Grain Selection" (PDF). Metallurgical and Materials Transactions A. 31A (11): 2877–2886. Bibcode:2000MMTA...31.2877D. doi:10.1007/BF02830351. S2CID   136914987.
  16. D'Souza, D. (Nov 2000). "Directional and Single-Crystal Solidification of Ni-Base Superalloys: Part I. The Role of Curved Isotherms on Grain Selection" (PDF). Metallurgical and Materials Transactions A. 31A (11): 2877–2886. Bibcode:2000MMTA...31.2877D. doi:10.1007/BF02830351. S2CID   136914987.
  17. D'Souza, D. (Nov 2000). "Directional and Single-Crystal Solidification of Ni-Base Superalloys: Part I. The Role of Curved Isotherms on Grain Selection" (PDF). Metallurgical and Materials Transactions A. 31A (11): 2877–2886. Bibcode:2000MMTA...31.2877D. doi:10.1007/BF02830351. S2CID   136914987.
  18. D'Souza, D. (Nov 2000). "Directional and Single-Crystal Solidification of Ni-Base Superalloys: Part I. The Role of Curved Isotherms on Grain Selection" (PDF). Metallurgical and Materials Transactions A. 31A (11): 2877–2886. Bibcode:2000MMTA...31.2877D. doi:10.1007/BF02830351. S2CID   136914987.
  19. D'Souza, D. (Nov 2000). "Directional and Single-Crystal Solidification of Ni-Base Superalloys: Part I. The Role of Curved Isotherms on Grain Selection" (PDF). Metallurgical and Materials Transactions A. 31A (11): 2877–2886. Bibcode:2000MMTA...31.2877D. doi:10.1007/BF02830351. S2CID   136914987.
  20. D'Souza, D. (Nov 2000). "Directional and Single-Crystal Solidification of Ni-Base Superalloys: Part I. The Role of Curved Isotherms on Grain Selection" (PDF). Metallurgical and Materials Transactions A. 31A (11): 2877–2886. Bibcode:2000MMTA...31.2877D. doi:10.1007/BF02830351. S2CID   136914987.

Bibliography

Further reading