Dirichlet's unit theorem

Last updated

In mathematics, Dirichlet's unit theorem is a basic result in algebraic number theory due to Peter Gustav Lejeune Dirichlet. [1] It determines the rank of the group of units in the ring OK of algebraic integers of a number field K. The regulator is a positive real number that determines how "dense" the units are.

Contents

The statement is that the group of units is finitely generated and has rank (maximal number of multiplicatively independent elements) equal to

r = r1 + r2 − 1

where r1 is the number of real embeddings and r2 the number of conjugate pairs of complex embeddings of K. This characterisation of r1 and r2 is based on the idea that there will be as many ways to embed K in the complex number field as the degree ; these will either be into the real numbers, or pairs of embeddings related by complex conjugation, so that

n = r1 + 2r2.

Note that if K is Galois over then either r1 = 0 or r2 = 0.

Other ways of determining r1 and r2 are

As an example, if K is a quadratic field, the rank is 1 if it is a real quadratic field, and 0 if an imaginary quadratic field. The theory for real quadratic fields is essentially the theory of Pell's equation.

The rank is positive for all number fields besides and imaginary quadratic fields, which have rank 0. The 'size' of the units is measured in general by a determinant called the regulator. In principle a basis for the units can be effectively computed; in practice the calculations are quite involved when n is large.

The torsion in the group of units is the set of all roots of unity of K, which form a finite cyclic group. For a number field with at least one real embedding the torsion must therefore be only {1,−1}. There are number fields, for example most imaginary quadratic fields, having no real embeddings which also have {1,−1} for the torsion of its unit group.

Totally real fields are special with respect to units. If L/K is a finite extension of number fields with degree greater than 1 and the units groups for the integers of L and K have the same rank then K is totally real and L is a totally complex quadratic extension. The converse holds too. (An example is K equal to the rationals and L equal to an imaginary quadratic field; both have unit rank 0.)

The theorem not only applies to the maximal order OK but to any order OOK. [2]

There is a generalisation of the unit theorem by Helmut Hasse (and later Claude Chevalley) to describe the structure of the group of S-units , determining the rank of the unit group in localizations of rings of integers. Also, the Galois module structure of has been determined. [3]

The regulator

Suppose that K is a number field and are a set of generators for the unit group of K modulo roots of unity. There will be r + 1 Archimedean places of K, either real or complex. For , write for the different embeddings into or and set Nj to 1 or 2 if the corresponding embedding is real or complex respectively. Then the r × (r + 1) matrix

has the property that the sum of any row is zero (because all units have norm 1, and the log of the norm is the sum of the entries in a row). This implies that the absolute value R of the determinant of the submatrix formed by deleting one column is independent of the column. The number R is called the regulator of the algebraic number field (it does not depend on the choice of generators ui). It measures the "density" of the units: if the regulator is small, this means that there are "lots" of units.

The regulator has the following geometric interpretation. The map taking a unit u to the vector with entries has an image in the r-dimensional subspace of consisting of all vectors whose entries have sum 0, and by Dirichlet's unit theorem the image is a lattice in this subspace. The volume of a fundamental domain of this lattice is .

The regulator of an algebraic number field of degree greater than 2 is usually quite cumbersome to calculate, though there are now computer algebra packages that can do it in many cases. It is usually much easier to calculate the product hR of the class number h and the regulator using the class number formula, and the main difficulty in calculating the class number of an algebraic number field is usually the calculation of the regulator.

Examples

A fundamental domain in logarithmic space of the group of units of the cyclic cubic field K obtained by adjoining to
Q
{\displaystyle \mathbb {Q} }
a root of f(x) = x + x - 2x - 1. If a denotes a root of f(x), then a set of fundamental units is {e1, e2}, where e1 = a + a - 1 and e2 = 2 - a. The area of the fundamental domain is approximately 0.910114, so the regulator of K is approximately 0.525455. Discriminant49CubicFieldFundamentalDomainOfUnits.png
A fundamental domain in logarithmic space of the group of units of the cyclic cubic field K obtained by adjoining to a root of f(x) = x + x − 2x − 1. If α denotes a root of f(x), then a set of fundamental units is {ε1, ε2}, where ε1 = α + α − 1 and ε2 = 2 − α. The area of the fundamental domain is approximately 0.910114, so the regulator of K is approximately 0.525455.

Higher regulators

A 'higher' regulator refers to a construction for a function on an algebraic K-group with index n > 1 that plays the same role as the classical regulator does for the group of units, which is a group K1. A theory of such regulators has been in development, with work of Armand Borel and others. Such higher regulators play a role, for example, in the Beilinson conjectures, and are expected to occur in evaluations of certain L-functions at integer values of the argument. [5] See also Beilinson regulator.

Stark regulator

The formulation of Stark's conjectures led Harold Stark to define what is now called the Stark regulator, similar to the classical regulator as a determinant of logarithms of units, attached to any Artin representation. [6] [7]

p-adic regulator

Let K be a number field and for each prime P of K above some fixed rational prime p, let UP denote the local units at P and let U1,P denote the subgroup of principal units in UP. Set

Then let E1 denote the set of global units ε that map to U1 via the diagonal embedding of the global units in E.

Since E1 is a finite-index subgroup of the global units, it is an abelian group of rank r1 + r2 − 1. The p-adic regulator is the determinant of the matrix formed by the p-adic logarithms of the generators of this group. Leopoldt's conjecture states that this determinant is non-zero. [8] [9]

See also

Notes

  1. Elstrodt 2007 , §8.D
  2. Stevenhagen, P. (2012). Number Rings (PDF). p. 57.
  3. Neukirch, Schmidt & Wingberg 2000, proposition VIII.8.6.11.
  4. Cohen 1993 , Table B.4
  5. Bloch, Spencer J. (2000). Higher regulators, algebraic K-theory, and zeta functions of elliptic curves. CRM Monograph Series. 11. Providence, RI: American Mathematical Society. ISBN   0-8218-2114-8. Zbl   0958.19001.
  6. Prasad, Dipendra; Yogonanda, C. S. (2007-02-23). A Report on Artin's holomorphy conjecture (PDF) (Report).
  7. Dasgupta, Samit (1999). Stark's Conjectures (PDF) (Thesis). Archived from the original (PDF) on 2008-05-10.
  8. Neukirch et al. (2008) p. 626–627
  9. Iwasawa, Kenkichi (1972). Lectures on p-adic L-functions. Annals of Mathematics Studies. 74. Princeton, NJ: Princeton University Press and University of Tokyo Press. pp. 36–42. ISBN   0-691-08112-3. Zbl   0236.12001.

Related Research Articles

In algebraic number theory, an algebraic integer is a complex number which is integral over the integers. That is, an algebraic integer is a complex root of some monic polynomial whose coefficients are integers. The set of all algebraic integers is closed under addition, subtraction and multiplication and therefore is a commutative subring of the complex numbers.

In number theory, the ideal class group of an algebraic number field K is the quotient group JK/PK where JK is the group of fractional ideals of the ring of integers of K, and PK is its subgroup of principal ideals. The class group is a measure of the extent to which unique factorization fails in the ring of integers of K. The order of the group, which is finite, is called the class number of K.

Orthogonal group Group of isometries of a Euclidean vector space or, more generally, of a vector space equipped with a quadratic form

In mathematics, the orthogonal group in dimension n, denoted O(n), is the group of distance-preserving transformations of a Euclidean space of dimension n that preserve a fixed point, where the group operation is given by composing transformations. The orthogonal group is sometimes called the general orthogonal group, by analogy with the general linear group. Equivalently, it is the group of n×n orthogonal matrices, where the group operation is given by matrix multiplication. The orthogonal group is an algebraic group and a Lie group. It is compact.

Algebraic number theory Branch of number theory

Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers, finite fields, and function fields. These properties, such as whether a ring admits unique factorization, the behavior of ideals, and the Galois groups of fields, can resolve questions of primary importance in number theory, like the existence of solutions to Diophantine equations.

In mathematics, the adele ring of a global field is a central object of class field theory, a branch of algebraic number theory. It is the restricted product of all the completions of the global field, and is an example of a self-dual topological ring.

In mathematics, the (field) norm is a particular mapping defined in field theory, which maps elements of a larger field into a subfield.

In mathematics, the field trace is a particular function defined with respect to a finite field extension L/K, which is a K-linear map from L onto K.

Ring of integers

In mathematics, the ring of integers of an algebraic number field is the ring of all algebraic integers contained in . An algebraic integer is a root of a monic polynomial with integer coefficients: . This ring is often denoted by or . Since any integer belongs to and is an integral element of , the ring is always a subring of .

In mathematics, more specifically in the field of analytic number theory, a Landau–Siegel zero or simply Siegel zero, named after Edmund Landau and Carl Ludwig Siegel, is a type of potential counterexample to the generalized Riemann hypothesis, on the zeros of Dirichlet L-functions associated to quadratic number fields. Roughly speaking, these are possible zeros very near to s = 1.

The Artin reciprocity law, which was established by Emil Artin in a series of papers, is a general theorem in number theory that forms a central part of global class field theory. The term "reciprocity law" refers to a long line of more concrete number theoretic statements which it generalized, from the quadratic reciprocity law and the reciprocity laws of Eisenstein and Kummer to Hilbert's product formula for the norm symbol. Artin's result provided a partial solution to Hilbert's ninth problem.

In mathematics, a quaternion algebra over a field F is a central simple algebra A over F that has dimension 4 over F. Every quaternion algebra becomes a matrix algebra by extending scalars, i.e. for a suitable field extension K of F, is isomorphic to the 2×2 matrix algebra over K.

In number theory, the class number formula relates many important invariants of a number field to a special value of its Dedekind zeta function.

Discriminant of an algebraic number field Measures the size of the ring of integers of the algebraic number field

In mathematics, the discriminant of an algebraic number field is a numerical invariant that, loosely speaking, measures the size of the algebraic number field. More specifically, it is proportional to the squared volume of the fundamental domain of the ring of integers, and it regulates which primes are ramified.

In number theory, the law of quadratic reciprocity, like the Pythagorean theorem, has lent itself to an unusually large number of proofs. Several hundred proofs of the law of quadratic reciprocity have been published.

In algebraic number theory, a reflection theorem or Spiegelungssatz is one of a collection of theorems linking the sizes of different ideal class groups, or the sizes of different isotypic components of a class group. The original example is due to Ernst Eduard Kummer, who showed that the class number of the cyclotomic field , with p a prime number, will be divisible by p if the class number of the maximal real subfield is. Another example is due to Scholz. A simplified version of his theorem states that if 3 divides the class number of a real quadratic field , then 3 also divides the class number of the imaginary quadratic field .

In algebraic number theory, a fundamental unit is a generator for the unit group of the ring of integers of a number field, when that group has rank 1. Dirichlet's unit theorem shows that the unit group has rank 1 exactly when the number field is a real quadratic field, a complex cubic field, or a totally imaginary quartic field. When the unit group has rank ≥ 1, a basis of it modulo its torsion is called a fundamental system of units. Some authors use the term fundamental unit to mean any element of a fundamental system of units, not restricting to the case of rank 1.

In mathematics, the Hilbert symbol or norm-residue symbol is a function from K× × K× to the group of nth roots of unity in a local field K such as the fields of reals or p-adic numbers. It is related to reciprocity laws, and can be defined in terms of the Artin symbol of local class field theory. The Hilbert symbol was introduced by David Hilbert in his Zahlbericht, with the slight difference that he defined it for elements of global fields rather than for the larger local fields.

In mathematics, a CM-field is a particular type of number field, so named for a close connection to the theory of complex multiplication. Another name used is J-field.

In algebraic number theory, Leopoldt's conjecture, introduced by H.-W. Leopoldt, states that the p-adic regulator of a number field does not vanish. The p-adic regulator is an analogue of the usual regulator defined using p-adic logarithms instead of the usual logarithms, introduced by H.-W. Leopoldt (1962).

Algebraic number field Finite degree (and hence algebraic) field extension of the field of rational numbers

In mathematics, an algebraic number field is an extension field of the field of rational numbers such that the field extension has finite degree . Thus is a field that contains and has finite dimension when considered as a vector space over .

References