S-unit

Last updated

In mathematics, in the field of algebraic number theory, an S-unit generalises the idea of unit of the ring of integers of the field. Many of the results which hold for units are also valid for S-units.

Contents

Definition

Let K be a number field with ring of integers R. Let S be a finite set of prime ideals of R. An element x of K is an S-unit if the principal fractional ideal (x) is a product of primes in S (to positive or negative powers). For the ring of rational integers Z one may take S to be a finite set of prime numbers and define an S-unit to be a rational number whose numerator and denominator are divisible only by the primes in S.

Properties

The S-units form a multiplicative group containing the units of R.

Dirichlet's unit theorem holds for S-units: the group of S-units is finitely generated, with rank (maximal number of multiplicatively independent elements) equal to r + s, where r is the rank of the unit group and s = |S|.

S-unit equation

The S-unit equation is a Diophantine equation

u + v = 1

with u and v restricted to being S-units of K (or more generally, elements of a finitely generated subgroup of the multiplicative group of any field of characteristic zero). The number of solutions of this equation is finite [1] and the solutions are effectively determined using estimates for linear forms in logarithms as developed in transcendental number theory. A variety of Diophantine equations are reducible in principle to some form of the S-unit equation: a notable example is Siegel's theorem on integral points on elliptic curves, and more generally superelliptic curves of the form yn = f(x).

A computational solver for S-unit equation is available in the software SageMath. [2]

Related Research Articles

Field (mathematics) Algebraic structure with addition, multiplication and division

In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics.

In number theory, the ideal class group of an algebraic number field K is the quotient group JK/PK where JK is the group of fractional ideals of the ring of integers of K, and PK is its subgroup of principal ideals. The class group is a measure of the extent to which unique factorization fails in the ring of integers of K. The order of the group, which is finite, is called the class number of K.

Algebraic number theory Branch of number theory

Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers, finite fields, and function fields. These properties, such as whether a ring admits unique factorization, the behavior of ideals, and the Galois groups of fields, can resolve questions of primary importance in number theory, like the existence of solutions to Diophantine equations.

In mathematics, Dirichlet's unit theorem is a basic result in algebraic number theory due to Peter Gustav Lejeune Dirichlet. It determines the rank of the group of units in the ring OK of algebraic integers of a number field K. The regulator is a positive real number that determines how "dense" the units are.

Ring of integers

In mathematics, the ring of integers of an algebraic number field is the ring of all algebraic integers contained in . An algebraic integer is a root of a monic polynomial with integer coefficients: . This ring is often denoted by or . Since any integer belongs to and is an integral element of , the ring is always a subring of .

Diophantine geometry Mathematics of varieties with integer coordinates

In mathematics, Diophantine geometry is the study of Diophantine equations by means of powerful methods in algebraic geometry. By the 20th century it became clear for some mathematicians that methods of algebraic geometry are ideal tools to study these equations.

In mathematics, complex multiplication (CM) is the theory of elliptic curves E that have an endomorphism ring larger than the integers; and also the theory in higher dimensions of abelian varieties A having enough endomorphisms in a certain precise sense. Put another way, it contains the theory of elliptic functions with extra symmetries, such as are visible when the period lattice is the Gaussian integer lattice or Eisenstein integer lattice.

In mathematics, Galois cohomology is the study of the group cohomology of Galois modules, that is, the application of homological algebra to modules for Galois groups. A Galois group G associated to a field extension L/K acts in a natural way on some abelian groups, for example those constructed directly from L, but also through other Galois representations that may be derived by more abstract means. Galois cohomology accounts for the way in which taking Galois-invariant elements fails to be an exact functor.

In algebraic number theory, the different ideal is defined to measure the (possible) lack of duality in the ring of integers of an algebraic number field K, with respect to the field trace. It then encodes the ramification data for prime ideals of the ring of integers. It was introduced by Richard Dedekind in 1882.

This is a glossary of arithmetic and diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of proposed conjectures, which can be related at various levels of generality.

A height function is a function that quantifies the complexity of mathematical objects. In Diophantine geometry, height functions quantify the size of solutions to Diophantine equations and are typically functions from a set of points on algebraic varieties to the real numbers.

In number theory, a Hecke character is a generalisation of a Dirichlet character, introduced by Erich Hecke to construct a class of L-functions larger than Dirichlet L-functions, and a natural setting for the Dedekind zeta-functions and certain others which have functional equations analogous to that of the Riemann zeta-function.

In mathematics, Siegel's theorem on integral points states that for a smooth algebraic curve C of genus g defined over a number field K, presented in affine space in a given coordinate system, there are only finitely many points on C with coordinates in the ring of integers O of K, provided g > 0.

In mathematics, the Hilbert symbol or norm-residue symbol is a function from K× × K× to the group of nth roots of unity in a local field K such as the fields of reals or p-adic numbers. It is related to reciprocity laws, and can be defined in terms of the Artin symbol of local class field theory. The Hilbert symbol was introduced by David Hilbert in his Zahlbericht, with the slight difference that he defined it for elements of global fields rather than for the larger local fields.

In mathematics, the subspace theorem says that points of small height in projective space lie in a finite number of hyperplanes. It is a result obtained by Wolfgang M. Schmidt (1972).

In mathematics, the Lubin–Tate formal group law is a formal group law introduced by Lubin and Tate (1965) to isolate the local field part of the classical theory of complex multiplication of elliptic functions. In particular it can be used to construct the totally ramified abelian extensions of a local field. It does this by considering the (formal) endomorphisms of the formal group, emulating the way in which elliptic curves with extra endomorphisms are used to give abelian extensions of global fields.

In mathematics, a superelliptic curve is an algebraic curve defined by an equation of the form

In mathematics, Siegel's identity refers to one of two formulae that are used in the resolution of Diophantine equations.

In mathematics, the Tsen rank of a field describes conditions under which a system of polynomial equations must have a solution in the field. The concept is named for C. C. Tsen, who introduced their study in 1936.

In mathematics, Shintani's unit theorem introduced by Shintani is a refinement of Dirichlet's unit theorem and states that a subgroup of finite index of the totally positive units of a number field has a fundamental domain given by a rational polyhedric cone in the Minkowski space of the field.

References

  1. Beukers, F.; Schlickewei, H. (1996). "The equation x+y=1 in finitely generated groups". Acta Arithmetica. 78 (2): 189–199. doi:10.4064/aa-78-2-189-199. ISSN   0065-1036.
  2. "Solve S-unit equation x + y = 1 — Sage Reference Manual v8.7: Algebraic Numbers and Number Fields". doc.sagemath.org. Retrieved 2019-04-16.

Further reading