Dithiofluorescein

Last updated
Dithiofluorescein
Dithiofluorescein.svg
Names
IUPAC name
3′,6′-Bis(sulfanyl)spiro[2-benzofuran-3,9′-xanthene]-1-one
Other names
    • 3′,6′-Dimercaptofluoran
    • 3′,6′-Dimercaptospiro[isobenzofuran-1(3H),9′-[9H]xanthen]-3-one
    • 3′,6′-Dimercapto-3H-spiro[isobenzofuran-1,9′-xanthen]-3-one
    • Thiofluorescein
Identifiers
3D model (JSmol)
ChemSpider
EC Number
  • 246-830-9
PubChem CID
  • InChI=1S/C20H12O3S2/c21-19-13-3-1-2-4-14(13)20(23-19)15-7-5-11(24)9-17(15)22-18-10-12(25)6-8-16(18)20/h1-10,24-25H
    Key: QOMSORNLFVSVPW-UHFFFAOYSA-N
  • C1=CC=C2C(=C1)C(=O)OC23C4=C(C=C(C=C4)S)OC5=C3C=CC(=C5)S
Properties
C20H12O3S2
Molar mass 364.43 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Dithiofluorescein (sometimes generically called thiofluorescein) is a complexometric indicator used in analytical chemistry. It changes from blue to colorless when it binds to mercury(2+) ions. [1] It thus can indicate the endpoint in the titration of thiols using o-hydroxymercuribenzoic acid [2] or its sodium salt. [3] The reagent can be immobilized t in a polymer on a fiber optic, which might allow development of a detector for sulfide ions in a flow cell. [4] Unlike fluorescein and other related fluoran dyes that have oxygen substituents on the benzene rings, dithiofluorescein, which has sulfur substituents, is not fluorescent. [5]

Related Research Articles

<span class="mw-page-title-main">Inductively coupled plasma mass spectrometry</span> Type of mass spectrometry that uses an inductively coupled plasma to ionize the sample

Inductively coupled plasma mass spectrometry (ICP-MS) is a type of mass spectrometry that uses an inductively coupled plasma to ionize the sample. It atomizes the sample and creates atomic and small polyatomic ions, which are then detected. It is known and used for its ability to detect metals and several non-metals in liquid samples at very low concentrations. It can detect different isotopes of the same element, which makes it a versatile tool in isotopic labeling.

<span class="mw-page-title-main">Alkylation</span> Transfer of an alkyl group from one molecule to another

Alkylation is a chemical reaction that entails transfer of an alkyl group. The alkyl group may be transferred as an alkyl carbocation, a free radical, a carbanion, or a carbene. Alkylating agents are reagents for effecting alkylation. Alkyl groups can also be removed in a process known as dealkylation. Alkylating agents are often classified according to their nucleophilic or electrophilic character. In oil refining contexts, alkylation refers to a particular alkylation of isobutane with olefins. For upgrading of petroleum, alkylation produces a premium blending stock for gasoline. In medicine, alkylation of DNA is used in chemotherapy to damage the DNA of cancer cells. Alkylation is accomplished with the class of drugs called alkylating antineoplastic agents.

<span class="mw-page-title-main">Fluorescein</span> Synthetic organic compound used as dye and fluorescent tracer

Fluorescein is an organic compound and dye based on the xanthene tricyclic structural motif, formally belonging to triarylmethine dyes family. It is available as a dark orange/red powder slightly soluble in water and alcohol. It is widely used as a fluorescent tracer for many applications.

<span class="mw-page-title-main">Sulfonic acid</span> Organic compounds with the structure R−S(=O)2−OH

In organic chemistry, sulfonic acid refers to a member of the class of organosulfur compounds with the general formula R−S(=O)2−OH, where R is an organic alkyl or aryl group and the S(=O)2(OH) group a sulfonyl hydroxide. As a substituent, it is known as a sulfo group. A sulfonic acid can be thought of as sulfuric acid with one hydroxyl group replaced by an organic substituent. The parent compound is the parent sulfonic acid, HS(=O)2(OH), a tautomer of sulfurous acid, S(=O)(OH)2. Salts or esters of sulfonic acids are called sulfonates.

<span class="mw-page-title-main">Salicylaldoxime</span> Chemical compound

Salicylaldoxime is an organic compound described by the formula C6H4CH=NOH-2-OH. It is the oxime of salicylaldehyde. This crystalline, colorless solid is a chelator and sometimes used in the analysis of samples containing transition metal ions, with which it often forms brightly coloured coordination complexes.

In chemistry, the Schöniger oxidation is a method of elemental analysis developed by Wolfgang Schöniger.

<span class="mw-page-title-main">Amidine</span> Organic compounds

Amidines are organic compounds with the functional group RC(NR)NR2, where the R groups can be the same or different. They are the imine derivatives of amides (RC(O)NR2). The simplest amidine is formamidine, HC(=NH)NH2.

The Griess test is an analytical chemistry test which detects the presence of nitrite ion in solution. One of its most important uses is the determination of nitrite in drinking water. The Griess diazotization reaction, on which the Griess reagent relies, was first described in 1858 by Peter Griess. The test has also been widely used for the detection of nitrates, which are a common component of explosives, as they can be reduced to nitrites and detected with the Griess test.

<span class="mw-page-title-main">Xenon trioxide</span> Chemical compound

Xenon trioxide is an unstable compound of xenon in its +6 oxidation state. It is a very powerful oxidizing agent, and liberates oxygen from water slowly, accelerated by exposure to sunlight. It is dangerously explosive upon contact with organic materials. When it detonates, it releases xenon and oxygen gas.

<span class="mw-page-title-main">Caesium carbonate</span> Chemical compound

Caesium carbonate or cesium carbonate is a white crystalline solid compound. Caesium carbonate has a high solubility in polar solvents such as water, alcohol and DMF. Its solubility is higher in organic solvents compared to other carbonates like potassium and sodium carbonates, although it remains quite insoluble in other organic solvents such as toluene, p-xylene, and chlorobenzene. This compound is used in organic synthesis as a base. It also appears to have applications in energy conversion.

<span class="mw-page-title-main">Rosocyanine</span> Chemical compound

Rosocyanine and rubrocurcumin are two red colored materials, which are formed by the reaction between curcumin and borates.

<span class="mw-page-title-main">Folin–Ciocalteu reagent</span>

The Folin–Ciocâlteu reagent (FCR) or Folin's phenol reagent or Folin–Denis reagent, is a mixture of phosphomolybdate and phosphotungstate used for the colorimetric in vitro assay of phenolic and polyphenolic antioxidants, also called the gallic acid equivalence method (GAE). It is named after Otto Folin, Vintilă Ciocâlteu, and Willey Glover Denis. The Folin-Denis reagent is prepared by mixing sodium tungstate and phosphomolybdic acid in phosphoric acid. The Folin–Ciocalteu reagent is just a modification of the Folin-Denis reagent. The modification consisted of the addition of lithium sulfate and bromine to the phosphotungstic-phosphomolybdic reagent.

<span class="mw-page-title-main">Ellman's reagent</span> Chemical compound

Ellman's reagent is a colorogenic chemical used to quantify the number or concentration of thiol groups in a sample. It was developed by George L. Ellman.

Flow injection analysis (FIA) is an approach to chemical analysis. It is accomplished by injecting a plug of sample into a flowing carrier stream. The principle is similar to that of Segmented Flow Analysis (SFA) but no air is injected into the sample or reagent streams..

<span class="mw-page-title-main">Chloroauric acid</span> Chemical compound

Chloroauric acid is an inorganic compound with the chemical formula H[AuCl4]. It forms hydrates H[AuCl4nH2O. Both the trihydrate and tetrahydrate are known. Both are orange-yellow solids consisting of the planar [AuCl4] anion. Often chloroauric acid is handled as a solution, such as those obtained by dissolution of gold in aqua regia. These solutions can be converted to other gold complexes or reduced to metallic gold or gold nanoparticles.

The Fleming–Tamao oxidation, or Tamao–Kumada–Fleming oxidation, converts a carbon–silicon bond to a carbon–oxygen bond with a peroxy acid or hydrogen peroxide. Fleming–Tamao oxidation refers to two slightly different conditions developed concurrently in the early 1980s by the Kohei Tamao and Ian Fleming research groups.

In coordination chemistry, a stability constant is an equilibrium constant for the formation of a complex in solution. It is a measure of the strength of the interaction between the reagents that come together to form the complex. There are two main kinds of complex: compounds formed by the interaction of a metal ion with a ligand and supramolecular complexes, such as host–guest complexes and complexes of anions. The stability constant(s) provide(s) the information required to calculate the concentration(s) of the complex(es) in solution. There are many areas of application in chemistry, biology and medicine.

<span class="mw-page-title-main">Capillary electrophoresis–mass spectrometry</span>

Capillary electrophoresis–mass spectrometry (CE–MS) is an analytical chemistry technique formed by the combination of the liquid separation process of capillary electrophoresis with mass spectrometry. CE–MS combines advantages of both CE and MS to provide high separation efficiency and molecular mass information in a single analysis. It has high resolving power and sensitivity, requires minimal volume and can analyze at high speed. Ions are typically formed by electrospray ionization, but they can also be formed by matrix-assisted laser desorption/ionization or other ionization techniques. It has applications in basic research in proteomics and quantitative analysis of biomolecules as well as in clinical medicine. Since its introduction in 1987, new developments and applications have made CE-MS a powerful separation and identification technique. Use of CE–MS has increased for protein and peptides analysis and other biomolecules. However, the development of online CE–MS is not without challenges. Understanding of CE, the interface setup, ionization technique and mass detection system is important to tackle problems while coupling capillary electrophoresis to mass spectrometry.

<span class="mw-page-title-main">Raluca Ripan</span> Romanian chemist

Raluca Ripan was a Romanian chemist, and a titular member of the Romanian Academy. She wrote many treatises, especially in the field of analytical chemistry.

<span class="mw-page-title-main">Bromopyrogallol red</span> Chemical compound

Bromopyrogallol red is frequently used in analytical chemistry as a reagent for spectrophometric analysis and as an complexometric indicator.

References

  1. Wroński, Mieczysław (1966). "Determination of thiol esters with o-hydroxymercuribenzoic acid". Analyst. 19 (2): 745–746. doi:10.1039/AN9669100745.
  2. Wroński, Mieczysław (1977). "Analytical applications of o-hydroxymercuribenzoic acid, dithiofluorescein and mercurated fluorescein". Talanta. 24 (6): 347–354. doi:10.1016/0039-9140(77)80019-2. PMID   18962100.
  3. Chromý, V.; Svoboda, V. (1963). "The determination of thiomalic acid". Talanta. 10 (10): 1109–1111. doi:10.1016/0039-9140(63)80152-6.
  4. Narayanaswamy, Ramaier; Sevilla, Fortunato III (1986). "Flow cell studies with immobilised reagents for the development of an optical fibre sulphide sensor". Analyst. 111 (9): 1085. doi:10.1039/AN9861101085.
  5. Sauer, Markus; Hofkens, Johan; Enderlein, Jörg (2011). "2.2. Organic Fluorophores". Handbook of Fluorescence Spectroscopy and Imaging: From Ensemble to Single Molecules. pp. 35–38. ISBN   978-3-527-31669-4.