Double layer (plasma physics)

Last updated

A double layer is a structure in a plasma consisting of two parallel layers of opposite electrical charge. The sheets of charge, which are not necessarily planar, produce localised excursions of electric potential, resulting in a relatively strong electric field between the layers and weaker but more extensive compensating fields outside, which restore the global potential. [1] Ions and electrons within the double layer are accelerated, decelerated, or deflected by the electric field, depending on their direction of motion.

Contents

Double layers can be created in discharge tubes, where sustained energy is provided within the layer for electron acceleration by an external power source. Double layers are claimed to have been observed in the aurora and are invoked in astrophysical applications. Similarly, a double layer in the auroral region requires some external driver to produce electron acceleration.

Electrostatic double layers are especially common in current-carrying plasmas, and are very thin (typically tens of Debye lengths), compared to the sizes of the plasmas that contain them. Other names for a double layer are electrostatic double layer, electric double layer, plasma double layers. The term ‘electrostatic shock’ in the magnetosphere has been applied to electric fields oriented at an oblique angle to the magnetic field in such a way that the perpendicular electric field is much stronger than the parallel electric field, [2] [3] In laser physics, a double layer is sometimes called an ambipolar electric field. [4]

Double layers are conceptually related to the concept of a 'sheath' (see Debye sheath). An early review of double layers from laboratory experiment and simulations is provided by Torvén. [5]

Classification

Double layer formation. Formation of a double layer requires electrons to move between two adjacent regions (Diagram 1, top) causing a charge separation. An electrostatic potential imbalance may result (Diagram 2, bottom) Double layer formation.png
Double layer formation. Formation of a double layer requires electrons to move between two adjacent regions (Diagram 1, top) causing a charge separation. An electrostatic potential imbalance may result (Diagram 2, bottom)

Double layers may be classified in the following ways:

Potential imbalance will be neutralised by electron (1&3) and ion (2&4) migration, unless the potential gradients are sustained by an external energy source. Under most laboratory situations, unlike outer space conditions, charged particles may effectively originate within the double layer, by ionization at the anode or cathode, and be sustained.

The figure shows the localised perturbation of potential produced by an idealised double layer consisting of two oppositely charged discs. The perturbation is zero at a distance from the double layer in every direction. [8]

If an incident charged particle, such as a precipitating auroral electron, encounters such a static or quasistatic structure in the magnetosphere, provided that the particle energy exceeds half the electric potential difference within the double layer, it will pass through without any net change in energy. Incident particles with less energy than this will also experience no net change in energy but will undergo more overall deflection.

DL Surface Plot.jpg

Four distinct regions of a double layer can be identified, which affect charged particles passing through it, or within it:

  1. A positive potential side of the double layer where electrons are accelerated towards it;
  2. A positive potential within the double layer where electrons are decelerated;
  3. A negative potential within the double layer where electrons are decelerated; and
  4. A negative potential side of the double layer where electrons are accelerated.

Double layers will tend to be transient in the magnetosphere, as any charge imbalance will become neutralised, unless there is a sustained external source of energy to maintain them as there is under laboratory conditions.

Formation mechanisms

The details of the formation mechanism depend on the environment of the plasma (e.g. double layers in the laboratory, ionosphere, solar wind, nuclear fusion, etc.). Proposed mechanisms for their formation have included:

Features and characteristics

The prediction of a lunar double layer was confirmed in 2003. In the shadows, the Moon charges negatively in the interplanetary medium. Moon-Mdf-2005.jpg
The prediction of a lunar double layer was confirmed in 2003. In the shadows, the Moon charges negatively in the interplanetary medium.
Hall effect thruster. The electric fields utilised in plasma thrusters (in particular the Helicon Double Layer Thruster) may be in the form of double layers. HallThruster 2.jpg
Hall effect thruster. The electric fields utilised in plasma thrusters (in particular the Helicon Double Layer Thruster) may be in the form of double layers.

History

In a low density plasma, localized space charge regions may build up large potential drops over distances of the order of some tens of the Debye lengths. Such regions have been called electric double layers. An electric double layer is the simplest space charge distribution that gives a potential drop in the layer and a vanishing electric field on each side of the layer. In the laboratory, double layers have been studied for half a century, but their importance in cosmic plasmas has not been generally recognized.

A cluster of double layers forming in an Alfven wave, about a sixth of the distance from the left. Click for more details Alfven-wave-double-layer.gif
A cluster of double layers forming in an Alfvén wave, about a sixth of the distance from the left. Click for more details

It was already known in the 1920s that a plasma has a limited capacity for current maintenance, Irving Langmuir [41] characterized double layers in the laboratory and called these structures double-sheaths. In the 1950s a thorough study of double layers started in the laboratory. [42] Many groups are still working on this topic theoretically, experimentally and numerically. It was first proposed by Hannes Alfvén (the developer of magnetohydrodynamics from laboratory experiments) that the polar lights or Aurora Borealis are created by electrons accelerated in the magnetosphere of the Earth. [43] He supposed that the electrons were accelerated electrostatically by an electric field localized in a small volume bounded by two charged regions, and the so-called double layer would accelerate electrons earthwards. Since then other mechanisms involving wave-particle interactions have been proposed as being feasible, from extensive spatial and temporal in situ studies of auroral particle characteristics. [44]

Many investigations of the magnetosphere and auroral regions have been made using rockets and satellites. McIlwain discovered from a rocket flight in 1960 that the energy spectrum of auroral electrons exhibited a peak that was thought then to be too sharp to be produced by a random process and which suggested, therefore, that an ordered process was responsible. [45] It was reported in 1977 that satellites had detected the signature of double layers as electrostatic shocks in the magnetosphere. [46] indications of electric fields parallel to the geomagnetic field lines was obtained by the Viking satellite, [47] which measures the differential potential structures in the magnetosphere with probes mounted on 40m long booms. These probes measured the local particle density and the potential difference between two points 80m apart. Asymmetric potential excursions with respect to 0 V were measured, and interpreted as a double layer with a net potential within the region. Magnetospheric double layers typically have a strength (where the electron temperature is assumed to lie in the range ) and are therefore weak. A series of such double layers would tend to merge, much like a string of bar magnets, and dissipate, even within a rarefied plasma. It has yet to be explained how any overall localised charge distribution in the form of double layers might provide a source of energy for auroral electrons precipitated into the atmosphere.

Interpretation of the FAST spacecraft data proposed strong double layers in the auroral acceleration region. [48] Strong double layers have also been reported in the downward current region by Andersson et al. [49] Parallel electric fields with amplitudes reaching nearly 1 V/m were inferred to be confined to a thin layer of approximately 10 Debye lengths. It is stated that the structures moved ‘at roughly the ion acoustic speed in the direction of the accelerated electrons, i.e., anti-earthward.’ That raises a question of what role, if any, double layers might play in accelerating auroral electrons that are precipitated downwards into the atmosphere from the magnetosphere. [50] Double layers have also been found in the Earth's magnetosphere by the space missions Cluster and MMS. [51] [52]

The possible role of precipitating electrons from 1-10keV themselves generating such observed double layers or electric fields has seldom been considered or analysed. Equally, the general question of how such double layers might be generated from an alternative source of energy, or what the spatial distribution of electric charge might be to produce net energy changes, is seldom addressed. Under laboratory conditions an external power supply is available.

In the laboratory, double layers can be created in different devices. They are investigated in double plasma machines, triple plasma machines, and Q-machines. The stationary potential structures that can be measured in these machines agree very well with what one would expect theoretically. An example of a laboratory double layer can be seen in the figure below, taken from Torvén and Lindberg (1980), where we can see how well-defined and confined is the potential drop of a double layer in a double plasma machine. One of the interesting aspects of the experiment by Torvén and Lindberg (1980) [53] is that not only did they measure the potential structure in the double plasma machine but they also found high-frequency fluctuating electric fields at the high-potential side of the double layer (also shown in the figure). These fluctuations are probably due to a beam-plasma interaction outside the double layer, which excites plasma turbulence. Their observations are consistent with experiments on electromagnetic radiation emitted by double layers in a double plasma machine by Volwerk (1993), [54] who, however, also observed radiation from the double layer itself.

The power of these fluctuations has a maximum around the plasma frequency of the ambient plasma. It was later reported that the electrostatic high-frequency fluctuations near the double layer can be concentrated in a narrow region, sometimes called the hf-spike. [55] Subsequently, both radio emissions, near the plasma frequency, and whistler waves at much lower frequencies were seen to emerge from this region. [56] Similar whistler wave structures were observed together with electron beams near Saturn's moon Enceladus, [57] suggesting the possible presence of a double layer at lower altitude.

A recent development in double layer experiments in the laboratory is the investigation of so-called stairstep double layers. It has been observed that a potential drop in a plasma column can be divided into different parts. Transitions from a single double layer into two-, three-, or greater-step double layers are strongly sensitive to the boundary conditions of the plasma.[ citation needed ]

Unlike experiments in the laboratory, the concept of such double layers in the magnetosphere, and any role in creating the aurora, suffers from there so far being no identified steady source of energy. The electric potential characteristic of double layers might however indicate that, those observed in the auroral zone are a secondary product of precipitating electrons that have been energized in other ways, such as by electrostatic waves. Some scientists have suggested a role of double layers in solar flares. [58] [59] Establishing such a role indirectly is even harder to verify than postulating double layers as accelerators of auroral electrons within the Earth's magnetosphere. Serious questions have been raised on their role even there. [60]

Footnotes

  1. Joos, G. (1951). Theoretical Physics. London & Glasgow: Blackie & Son Ltd. p. 271.
  2. http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1987dla..conf..295 [ dead link ]
  3. Block, L. P. (1978). "A Double Layer Review (Paper dedicated to Professor Hannes Alfvén on the occasion of his 70th birthday, 30 May 1978)". Astrophysics and Space Science. 55 (1): 59. Bibcode:1978Ap&SS..55...59B. doi:10.1007/BF00642580. S2CID   122977170.
  4. Bulgakova, Nadezhda M.; Bulgakov, Alexander V.; Bobrenok, Oleg F. (2000). "Double layer effects in laser-ablation plasma plumes". Physical Review E. 62 (4): 5624–35. Bibcode:2000PhRvE..62.5624B. doi:10.1103/PhysRevE.62.5624. PMID   11089121.
  5. Torvén, S (1976). "Formation of Double Layers in Laboratory Plasmas". Astrophysics and Space Science Library. 74: 109. Bibcode:1979wisp.proc..109T. doi:10.1007/978-94-009-9500-0_9. ISBN   978-94-009-9502-4.
  6. Yamamoto, Takashi; Kan, J. R. (1985). "Double layer formation due to current injection". Planetary and Space Science. 33 (7): 853–861. Bibcode:1985P&SS...33..853Y. doi:10.1016/0032-0633(85)90040-6.
  7. Carlqvist, P. (1982). "On the physics of relativistic double layers". Astrophysics and Space Science. 87 (1–2): 21. Bibcode:1982Ap&SS..87...21C. doi:10.1007/bf00648904. S2CID   123205274.
  8. Bryant, D.A. (1998). Acceleration in the Auroral and Beyond. p. 12. ISBN   9780750305334.
  9. Hultqvist, Bengt (1971). "On the production of a magnetic-field-aligned electric field by the interaction between the hot magnetospheric plasma and the cold ionosphere". Planetary and Space Science. 19 (7): 749–759. Bibcode:1971P&SS...19..749H. doi:10.1016/0032-0633(71)90033-X.
  10. Ishiguro, S.; Kamimura, T.; Sato, T. (1985). "Double layer formation caused by contact between different temperature plasmas". Physics of Fluids. 28 (7): 2100. Bibcode:1985PhFl...28.2100I. doi:10.1063/1.865390.
  11. Torven, S (1976). "Formation of Double Layers in Laboratory Plasmas". Astrophysics and Space Science Library. 74: 109. Bibcode:1979wisp.proc..109T. doi:10.1007/978-94-009-9500-0_9. ISBN   978-94-009-9502-4.
  12. Stenzel, R. L.; Gekelman, W.; Wild, N. (1982). "Double layer formation during current sheet disruptions in a reconnection experiment". Geophysical Research Letters. 9 (6): 680. Bibcode:1982GeoRL...9..680S. doi:10.1029/GL009i006p00680.
  13. Thiemann, H.; Singh, N.; Schunk, R. W. (1983). "Formation of V-shaped potentials". European Rocket and Balloon Programmes and Related Research: 269. Bibcode:1983ESASP.183..269T.
  14. Yamamoto, Takashi; Kan, J. R. (1985). "Double layer formation due to current injection". Planetary and Space Science. 33 (7): 853–861. Bibcode:1985P&SS...33..853Y. doi:10.1016/0032-0633(85)90040-6.
  15. Williams, A. C.; Weisskopf, M. C.; Elsner, R. F.; Darbro, W.; Sutherland, P. G. (1986). "Accretion onto Neutron Stars with the Presence of a Double Layer". The Astrophysical Journal. 305: 759. Bibcode:1986ApJ...305..759W. doi:10.1086/164289.
  16. Peratt, Anthony L. (1986). "Evolution of the plasma universe. I. Double radio galaxies, quasars, and extragalactic jets". IEEE Transactions on Plasma Science. 14: 639. Bibcode:1986ITPS...14..639P. doi:10.1109/TPS.1986.4316615. S2CID   30767626.
  17. Lennartsson, W. (1987). "Some Aspects of Double Layer Formation in a Plasma Constrained by a Magnetic Mirror". Double Layers in Astrophysics: 275. Bibcode:1987NASCP2469..275L.
  18. Lindberg, Lennart (1988). "Observations of propagating double layers in a high current discharge". Astrophysics and Space Science. 144 (1–2): 3–13. Bibcode:1988Ap&SS.144....3L. doi:10.1007/BF00793169. S2CID   117060217.
  19. Raadu, Michael A.; Rasmussen, J. Juul (1988). "Dynamical aspects of electrostatic double layers". Astrophysics and Space Science. 144 (1–2): 43. Bibcode:1988Ap&SS.144...43R. doi:10.1007/BF00793172. S2CID   120316850.
  20. Singh, Nagendra; Hwang, K. S. (1988). "Electric potential structures and propagation of electron beams injected from a spacecraft into a plasma". Journal of Geophysical Research. 93 (A9): 10035. Bibcode:1988JGR....9310035S. doi:10.1029/JA093iA09p10035.
  21. Lembege, B.; Dawson, J. M. (1989). "Formation of double layers within an oblique collisionless shock". Physical Review Letters. 62 (23): 2683–2686. Bibcode:1989PhRvL..62.2683L. doi:10.1103/PhysRevLett.62.2683. PMID   10040061.
  22. Bulgakova, Nadezhda M.; Bulgakov, Alexander V.; Bobrenok, Oleg F. (2000). "Double layer effects in laser-ablation plasma plumes". Physical Review E. 62 (4): 5624–35. Bibcode:2000PhRvE..62.5624B. doi:10.1103/PhysRevE.62.5624. PMID   11089121.
  23. Singh, Nagendra (2002). "Spontaneous formation of current-driven double layers in density depletions and its relevance to solitary Alfven waves". Geophysical Research Letters. 29 (7): 51. Bibcode:2002GeoRL..29.1147S. doi:10.1029/2001gl014033. S2CID   119750076.
  24. Borisov, N.; Mall, U. (2002). "The structure of the double layer behind the Moon". Journal of Plasma Physics. 67 (4): 277–299. Bibcode:2002JPlPh..67..277B. doi:10.1017/s0022377802001654. S2CID   124908517.
  25. Halekas, J. S.; Lin, R. P.; Mitchell, D. L. (2003). "Inferring the scale height of the lunar nightside double layer" (PDF). Geophysical Research Letters. 30 (21): 2117. Bibcode:2003GeoRL..30.2117H. doi:10.1029/2003GL018421. S2CID   121743325.
  26. Halekas, J. S.; Mitchell, D. L.; Lin, R. P.; Hood, L. L.; Acuña, M. H.; Binder, A. B. (2002). "Evidence for negative charging of the lunar surface in shadow". Geophysical Research Letters. 29 (10): 1435. Bibcode:2002GeoRL..29.1435H. doi:10.1029/2001GL014428. hdl: 10150/623417 . S2CID   54753205.
  27. "1978Ap&SS..55...59B Page 60".
  28. Torvén, S (1982). "High-voltage double layers in a magnetised plasma column". Journal of Physics D: Applied Physics. 15 (10): 1943–1949. Bibcode:1982JPhD...15.1943T. doi:10.1088/0022-3727/15/10/012. S2CID   250874820.
  29. Song, B; Angelo, N D; Merlino, R L (1992). "Stability of a spherical double layer produced through ionization". Journal of Physics D: Applied Physics. 25 (6): 938–941. Bibcode:1992JPhD...25..938S. doi:10.1088/0022-3727/25/6/006. S2CID   250845364.
  30. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JAPIAU000037000007002598000001&idtype=cvips&gifs=yes [ dead link ]
  31. Alfven, H. (1982). "Paradigm transition in cosmic plasma physics". Physica Scripta. 2: 10–19. Bibcode:1982PhST....2...10A. doi:10.1088/0031-8949/1982/T2A/002. S2CID   250752052.
  32. See "Helicon Double Layer Thruster study [ permanent dead link ]", European Space Agency; "ESA accelerates towards a new space thruster" (2005)
  33. Alfvén, H.; Carlqvist, P. (1978). "Interstellar clouds and the formation of stars". Astrophysics and Space Science. 55 (2): 487–509. Bibcode:1978Ap&SS..55..487A. doi:10.1007/BF00642272. S2CID   122687137.
  34. Torvén, S; Lindberg, L; Carpenter, R T (1985). "Spontaneous transfer of magnetically stored energy to kinetic energy by electric double layers". Plasma Phys. Control. Fusion. 27 (2): 143–158. Bibcode:1985PPCF...27..143T. doi:10.1088/0741-3335/27/2/005. S2CID   250863148.
  35. Raadu, Michael A.; Rasmussen, J. Juul (1988). "Dynamical aspects of electrostatic double layers". Astrophysics and Space Science. 144 (1–2): 43. Bibcode:1988Ap&SS.144...43R. doi:10.1007/BF00793172. S2CID   120316850.
  36. Gimmell, Jennifer; Sriram, Aditi; Gershman, Sophia; Post-Zwicker, Andrew (2002). "Bio-plasma physics: Measuring Ion Transport Across Cell membranes with Plasmas". Aps Ohio Sections Fall Meeting Abstracts: 1P.017. Bibcode:2002APS..OSF.1P017G.
  37. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=AJPIAS000068000005000450000001&idtype=cvips&gifs=yes [ dead link ]
  38. Alfven, H. (1982). "On hierarchial [sic] cosmology". NASA Sti/Recon Technical Report N. 82: 28234. Bibcode:1982STIN...8228234A.
  39. G. L. Rogoff, Ed., "Introduction", IEEE Transactions on Plasma Science, vol. 19, p. 989, Dec. 1991. See extract on the Plasma Coalition web site Archived 2008-02-13 at the Wayback Machine
  40. Hannes Alfvèn (2012) [1981]. "II.6. Electric Double Layers, II.6.1. General Properties of Electric Double Layers". Cosmic Plasma. Vol. 82. D. Reidel Publishing Company. p. 29. ISBN   9789400983748.
  41. Langmuir, Irving (1929). "The Interaction of Electron and Positive Ion Space Charges in Cathode Sheaths". Physical Review. 33 (6): 954–989. Bibcode:1929PhRv...33..954L. doi:10.1103/physrev.33.954.
  42. e.g. Schonhuber, M.J. (1958). Quecksilber-Niederdruck-Gasenladunger. Munchen: Lachner.
  43. Alfvén, H., "On the theory of magnetic storms and aurorae", Tellus, 10, 104,. 1958.
  44. Bryant, D.A (June 2002). "The roles of static and dynamic electric fields in the auroral acceleration region". Journal of Geophysical Research. 107 (A6): 1077. Bibcode:2002JGRA..107.1077B. doi: 10.1029/2001JA900162 .
  45. McIlwain, C E (1960). "Direct Measurement of Particles Producing Visible Auroras". Journal of Geophysical Research. 65 (9): 2727. Bibcode:1960JGR....65.2727M. doi:10.1029/JZ065i009p02727.
  46. Mozer, F. S.; Carlson, C. W.; Hudson, M. K.; Torbert, R. B.; Parady, B.; Yatteau, J.; Kelley, M. C. (1977). "Observations of paired electrostatic shocks in the polar magnetosphere". Physical Review Letters. 38 (6): 292. Bibcode:1977PhRvL..38..292M. doi:10.1103/PhysRevLett.38.292.
  47. Bostrom, Rolf (1992). "Observations of weak double layers on auroral field lines". IEEE Transactions on Plasma Science. 20 (6): 756–763. Bibcode:1992ITPS...20..756B. doi:10.1109/27.199524.
  48. Ergun, R. E.; et al. (2002). "Parallel electric fields in the upward current region of the aurora: Indirect and direct observations". Physics of Plasmas. 9 (9): 3685–3694. Bibcode:2002PhPl....9.3685E. doi:10.1063/1.1499120.
  49. Andersson, L.; et al. (2002). "Characteristics of parallel electric fields in the downward current region of the aurora". Physics of Plasmas. 9 (8): 3600–3609. Bibcode:2002PhPl....9.3600A. doi:10.1063/1.1490134.
  50. Bryant, D.A., and G.M.Courtier (2015). "Electrostatic double layers as auroral particle accelerators - a problem". Annales Geophysicae. 33 (4): 481–482. Bibcode:2015AnGeo..33..481B. doi: 10.5194/angeo-33-481-2015 .{{cite journal}}: CS1 maint: multiple names: authors list (link)
  51. Wang, Rongsheng; Lu, Quanming; Khotyaintsev, Yuri V.; Volwerk, Martin; Du, Aimin; Nakamura, Rumi; Gonzalez, Walter D.; Sun, Xuan; Baumjohann, Wolfgang; Li, Xing; Zhang, Tielong; Fazakerley, Andrew N.; Huang, Can; Wu, Mingyu (2014-07-28). "Observation of double layer in the separatrix region during magnetic reconnection". Geophysical Research Letters. 41 (14): 4851–4858. doi:10.1002/2014GL061157. ISSN   0094-8276.
  52. Yuan, Zhigang; Dong, Yue; Huang, Shiyong; Xue, Zuxiang; Yu, Xiongdong (2022-07-16). "Direct Observation of Acceleration and Thermalization of Beam Electrons Caused by Double Layers in the Earth's Plasma Sheet". Geophysical Research Letters. 49 (13). doi:10.1029/2022GL099483. ISSN   0094-8276.
  53. Torvén, S.; Lindberg, L. (1982). "Properties of a fluctuating double layer in a magnetized plasma column". Journal of Physics D: Applied Physics. 13 (12): 2285–2300. Bibcode:1980pfdl.rept.....T. doi:10.1088/0022-3727/13/12/014. S2CID   250837586.
  54. Volwerk, M (1993). "Radiation from electrostatic double layers in laboratory plasmas". Journal of Physics D: Applied Physics. 26 (8): 1192–1202. Bibcode:1993JPhD...26.1192V. doi:10.1088/0022-3727/26/8/007. S2CID   250871682.
  55. Gunell, H.; et al. (1996). "Bursts of high-frequency plasma waves at an electric double layer". Journal of Physics D: Applied Physics. 29 (3): 643–654. Bibcode:1996JPhD...29..643G. doi:10.1088/0022-3727/29/3/025. S2CID   250753554.
  56. Brenning, N.; Axnäs, I.; Raadu, M. A.; Tennfors, E.; Koepke, M. (2006). "Radiation from an electron beam in a magnetized plasma: Whistler mode wave packets". Journal of Geophysical Research. 111 (A11): A11212. Bibcode:2006JGRA..11111212B. doi: 10.1029/2006JA011739 .
  57. Gurnett, D. A.; Averkamp, T. F.; Schippers, P.; Persoon, A. M.; Hospodarsky, G. B.; Leisner, J. S.; Kurth, W. S.; Jones, G. H.; Coates, A. J.; Crary, F. J.; Dougherty, M. K. (2011). "Auroral hiss, electron beams and standing Alfvén wave currents near Saturn's moon Enceladus" (PDF). Geophysical Research Letters. 38 (6): L06102. Bibcode:2011GeoRL..38.6102G. doi:10.1029/2011GL046854. S2CID   54539728.
  58. Hasan, S. S.; Ter Haar, D. (1978). "The Alfvén-Carlquist Double-Layer Theory of Solar Flares". Astrophysics and Space Science. 56 (1): 89. Bibcode:1978Ap&SS..56...89H. doi:10.1007/BF00643464. S2CID   122003016.
  59. Khan, J. I. (1989). "A model for solar flares invoking weak double layers". Proceedings of the Astronomical Society of Australia. 8 (1): 29–31. Bibcode:1989PASA....8...29K. doi:10.1017/S1323358000022840. S2CID   117844249.
  60. Bryant, D.A.,R.Bingham and U.deAngelis (1992). "Double layers are not particle accelerators". Physical Review Letters. 68 (1): 37–39. Bibcode:1992PhRvL..68...37B. doi:10.1103/PhysRevLett.68.37. PMID   10045106.{{cite journal}}: CS1 maint: multiple names: authors list (link)

Related Research Articles

<span class="mw-page-title-main">Solar wind</span> Stream of charged particles from the Sun

The solar wind is a stream of charged particles released from the upper atmosphere of the Sun, called the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between 0.5 and 10 keV. The composition of the solar wind plasma also includes a mixture of materials found in the solar plasma: trace amounts of heavy ions and atomic nuclei of elements such as C, N, O, Ne, Mg, Si, S, and Fe. There are also rarer traces of some other nuclei and isotopes such as P, Ti, Cr, and 58Ni, 60Ni, and 62Ni. Superimposed with the solar-wind plasma is the interplanetary magnetic field. The solar wind varies in density, temperature and speed over time and over solar latitude and longitude. Its particles can escape the Sun's gravity because of their high energy resulting from the high temperature of the corona, which in turn is a result of the coronal magnetic field. The boundary separating the corona from the solar wind is called the Alfvén surface.

<span class="mw-page-title-main">Magnetohydrodynamics</span> Model of electrically conducting fluids

Magnetohydrodynamics is a model of electrically conducting fluids that treats all interpenetrating particle species together as a single continuous medium. It is primarily concerned with the low-frequency, large-scale, magnetic behavior in plasmas and liquid metals and has applications in numerous fields including geophysics, astrophysics, and engineering.

<span class="mw-page-title-main">Aurora</span> Natural luminous atmospheric effect observed chiefly at high latitudes

An aurora , also commonly known as the northern lights or southern lights, is a natural light display in Earth's sky, predominantly seen in high-latitude regions. Auroras display dynamic patterns of brilliant lights that appear as curtains, rays, spirals, or dynamic flickers covering the entire sky.

<span class="mw-page-title-main">Kristian Birkeland</span> Norwegian scientist

Kristian Olaf Bernhard Birkeland was a Norwegian scientist, professor of physics at the Royal Fredriks University in Oslo. He is best remembered for his theories of atmospheric electric currents that elucidated the nature of the aurora borealis. In order to fund his research on the aurorae, he invented the electromagnetic cannon and the Birkeland–Eyde process of fixing nitrogen from the air. Birkeland was nominated for the Nobel Prize seven times.

<span class="mw-page-title-main">Hannes Alfvén</span> Swedish electrical engineer, plasma physicist and Nobel laureate

Hannes Olof Gösta Alfvén was a Swedish electrical engineer, plasma physicist and winner of the 1970 Nobel Prize in Physics for his work on magnetohydrodynamics (MHD). He described the class of MHD waves now known as Alfvén waves. He was originally trained as an electrical power engineer and later moved to research and teaching in the fields of plasma physics and electrical engineering. Alfvén made many contributions to plasma physics, including theories describing the behavior of aurorae, the Van Allen radiation belts, the effect of magnetic storms on the Earth's magnetic field, the terrestrial magnetosphere, and the dynamics of plasmas in the Milky Way galaxy.

<span class="mw-page-title-main">Plasma cosmology</span> Non-standard model of the universe; emphasizes the role of ionized gases

Plasma cosmology is a non-standard cosmology whose central postulate is that the dynamics of ionized gases and plasmas play important, if not dominant, roles in the physics of the universe at interstellar and intergalactic scales. In contrast, the current observations and models of cosmologists and astrophysicists explain the formation, development, and evolution of large-scale structures as dominated by gravity.

<span class="mw-page-title-main">Alfvén wave</span> Low-frequency plasma wave

In plasma physics, an Alfvén wave, named after Hannes Alfvén, is a type of plasma wave in which ions oscillate in response to a restoring force provided by an effective tension on the magnetic field lines.

<span class="mw-page-title-main">Magnetic reconnection</span> Process in plasma physics

Magnetic reconnection is a physical process occurring in electrically conducting plasmas, in which the magnetic topology is rearranged and magnetic energy is converted to kinetic energy, thermal energy, and particle acceleration. Magnetic reconnection involves plasma flows at a substantial fraction of the Alfvén wave speed, which is the fundamental speed for mechanical information flow in a magnetized plasma.

<span class="mw-page-title-main">Magnetosphere of Saturn</span> Cavity in the solar wind the sixth planet creates

The magnetosphere of Saturn is the cavity created in the flow of the solar wind by the planet's internally generated magnetic field. Discovered in 1979 by the Pioneer 11 spacecraft, Saturn's magnetosphere is the second largest of any planet in the Solar System after Jupiter. The magnetopause, the boundary between Saturn's magnetosphere and the solar wind, is located at a distance of about 20 Saturn radii from the planet's center, while its magnetotail stretches hundreds of Saturn radii behind it.

<span class="mw-page-title-main">Cluster II (spacecraft)</span> European Space Agency mission

Cluster II is a space mission of the European Space Agency, with NASA participation, to study the Earth's magnetosphere over the course of nearly two solar cycles. The mission is composed of four identical spacecraft flying in a tetrahedral formation. As a replacement for the original Cluster spacecraft which were lost in a launch failure in 1996, the four Cluster II spacecraft were successfully launched in pairs in July and August 2000 onboard two Soyuz-Fregat rockets from Baikonur, Kazakhstan. In February 2011, Cluster II celebrated 10 years of successful scientific operations in space. In February 2021, Cluster II celebrated 20 years of successful scientific operations in space. As of March 2023, its mission has been extended until September 2024. The China National Space Administration/ESA Double Star mission operated alongside Cluster II from 2004 to 2007.

<span class="mw-page-title-main">Birkeland current</span> Currents flowing along geomagnetic field lines

A Birkeland current is a set of electrical currents that flow along geomagnetic field lines connecting the Earth's magnetosphere to the Earth's high latitude ionosphere. In the Earth's magnetosphere, the currents are driven by the solar wind and interplanetary magnetic field and by bulk motions of plasma through the magnetosphere. The strength of the Birkeland currents changes with activity in the magnetosphere. Small scale variations in the upward current sheets accelerate magnetospheric electrons which, when they reach the upper atmosphere, create the Auroras Borealis and Australis. In the high latitude ionosphere, the Birkeland currents close through the region of the auroral electrojet, which flows perpendicular to the local magnetic field in the ionosphere. The Birkeland currents occur in two pairs of field-aligned current sheets. One pair extends from noon through the dusk sector to the midnight sector. The other pair extends from noon through the dawn sector to the midnight sector. The sheet on the high latitude side of the auroral zone is referred to as the Region 1 current sheet and the sheet on the low latitude side is referred to as the Region 2 current sheet.

<i>Wind</i> (spacecraft) NASA probe to study solar wind, at L1 since 1995

The Global Geospace Science (GGS) Wind satellite is a NASA science spacecraft designed to study radio waves and plasma that occur in the solar wind and in the Earth's magnetosphere. It was launched on 1 November 1994, at 09:31:00 UTC, from launch pad LC-17B at Cape Canaveral Air Force Station (CCAFS) in Merritt Island, Florida, aboard a McDonnell Douglas Delta II 7925-10 rocket. Wind was designed and manufactured by Martin Marietta Astro Space Division in East Windsor Township, New Jersey. The satellite is a spin-stabilized cylindrical satellite with a diameter of 2.4 m and a height of 1.8 m.

A dusty plasma is a plasma containing micrometer (10−6) to nanometer (10−9) sized particles suspended in it. Dust particles are charged and the plasma and particles behave as a plasma. Dust particles may form larger particles resulting in "grain plasmas". Due to the additional complexity of studying plasmas with charged dust particles, dusty plasmas are also known as complex plasmas.

<span class="mw-page-title-main">Magnetosphere of Jupiter</span> Cavity created in the solar wind

The magnetosphere of Jupiter is the cavity created in the solar wind by Jupiter's magnetic field. Extending up to seven million kilometers in the Sun's direction and almost to the orbit of Saturn in the opposite direction, Jupiter's magnetosphere is the largest and most powerful of any planetary magnetosphere in the Solar System, and by volume the largest known continuous structure in the Solar System after the heliosphere. Wider and flatter than the Earth's magnetosphere, Jupiter's is stronger by an order of magnitude, while its magnetic moment is roughly 18,000 times larger. The existence of Jupiter's magnetic field was first inferred from observations of radio emissions at the end of the 1950s and was directly observed by the Pioneer 10 spacecraft in 1973.

An electrostatic analyzer or ESA is an instrument used in ion optics that employs an electric field to allow the passage of only those ions or electrons that have a given specific energy. It usually also focuses these particles into a smaller area. ESAs are typically used as components of space instrumentation, to limit the scanning (sensing) energy range and, thereby also, the range of particles targeted for detection and scientific measurement. The closest analogue in photon optics is a filter.

<span class="mw-page-title-main">Plasma (physics)</span> State of matter

Plasma is one of four fundamental states of matter characterized by the presence of a significant portion of charged particles in any combination of ions or electrons. It is the most abundant form of ordinary matter in the universe, mostly in stars, but also dominating the rarefied intracluster medium and intergalactic medium. Plasma can be artificially generated, for example, by heating a neutral gas or subjecting it to a strong electromagnetic field.

The impact of the solar wind onto the magnetosphere generates an electric field within the inner magnetosphere - the convection field-. Its general direction is from dawn to dusk. The co-rotating thermal plasma within the inner magnetosphere drifts orthogonal to that field and to the geomagnetic field Bo. The generation process is not yet completely understood. One possibility is viscous interaction between solar wind and the boundary layer of the magnetosphere (magnetopause). Another process may be magnetic reconnection. Finally, a hydromagnetic dynamo process in the polar regions of the inner magnetosphere may be possible. Direct measurements via satellites have given a fairly good picture of the structure of that field. A number of models of that field exists.

<span class="mw-page-title-main">JEDI</span> Radiometer and particle detector on the Juno spacecraft

JEDI (Jupiter Energetic-particle Detector Instrument) is an instrument on the Juno spacecraft orbiting planet Jupiter. JEDI coordinates with the several other space physics instruments on the Juno spacecraft to characterize and understand the space environment of Jupiter's polar regions, and specifically to understand the generation of Jupiter's powerful aurora. It is part of a suite of instruments to study the magnetosphere of Jupiter. JEDI consists of three identical detectors that use microchannel plates and foil layers to detect the energy, angle, and types of ion within a certain range. It can detect electrons between 40 and 500 keV (Kilo electron-volts), and hydrogen and oxygen from a few tens of keV to less than 1000 keV (1 MeV). JEDI uses radiation hardened Application Specific Integrated Circuits (ASIC)s. JEDI was turned on in January 2016 while still en route to Jupiter to also study interplanetary space. JEDI uses solid state detectors (SSD's) to measure the total energy (E) of both the ions and the electrons. The MCP anodes and the SSD arrays are configured to determine the directions of arrivals of the incoming charged particles. The instruments also use fast triple coincidence and optimum shielding to suppress penetrating background radiation and incoming UV foreground.

Cynthia Cattell is a space plasma physicist known for her research on solar flares and radiation belts.

<span class="mw-page-title-main">James Dungey</span> British space scientist

James Wynne Dungey (1923–2015) was a British space scientist who was pivotal in establishing the field of space weather and made significant contributions to the fundamental understanding of plasma physics.

References