Dynamic unobserved effects model

Last updated

A dynamic unobserved effects model is a statistical model used in econometrics for panel analysis. It is characterized by the influence of previous values of the dependent variable on its present value, and by the presence of unobservable explanatory variables.

Contents

The term “dynamic” here means the dependence of the dependent variable on its past history; this is usually used to model the “state dependence” in economics. For instance, for a person who cannot find a job this year, it will be harder to find a job next year because her present lack of a job will be a negative signal for the potential employers. “Unobserved effects” means that one or some of the explanatory variables are unobservable: for example, consumption choice of one flavor of ice cream over another is a function of personal preference, but preference is unobservable.

Continuous dependent variable

Censored dependent variable

In a panel data tobit model, [1] [2] if the outcome partially depends on the previous outcome history this tobit model is called "dynamic". For instance, taking a person who finds a job with a high salary this year, it will be easier for her to find a job with a high salary next year because the fact that she has a high-wage job this year will be a very positive signal for the potential employers. The essence of this type of dynamic effect is the state dependence of the outcome. The "unobservable effects" here refers to the factor which partially determines the outcome of individual but cannot be observed in the data. For instance, the ability of a person is very important in job-hunting, but it is not observable for researchers. A typical dynamic unobserved effects tobit model can be represented as

In this specific model, is the dynamic effect part and is the unobserved effect part whose distribution is determined by the initial outcome of individual i and some exogenous features of individual i.

Based on this setup, the likelihood function conditional on can be given as

For the initial values , there are two different ways to treat them in the construction of the likelihood function: treating them as constant or imposing a distribution on them and calculate out the unconditional likelihood function. But whichever way is chosen to treat the initial values in the likelihood function, we cannot get rid of the integration inside the likelihood function when estimating the model by maximum likelihood estimation (MLE). Expectation Maximum (EM) algorithm is usually a good solution for this computation issue. [3] Based on the consistent point estimates from MLE, Average Partial Effect (APE) [4] can be calculated correspondingly. [5]

Binary dependent variable

Formulation

A typical dynamic unobserved effects model with a binary dependent variable is represented [6] as:

where ci is an unobservable explanatory variable, zit are explanatory variables which are exogenous conditional on the ci, and G(∙) is a cumulative distribution function.

Estimates of parameters

In this type of model, economists have a special interest in ρ, which is used to characterize the state dependence. For example, yi,t can be a woman's choice whether to work or not, zit includes the i-th individual's age, education level, number of children, and other factors. ci can be some individual specific characteristic which cannot be observed by economists. [7] It is a reasonable conjecture that one's labor choice in period t should depend on his or her choice in period t  1 due to habit formation or other reasons. This dependence is characterized by parameter ρ.

There are several MLE-based approaches to estimate δ and ρ consistently. The simplest way is to treat yi,0 as non-stochastic and assume ci is independent with zi. Then by integrating P(yi,t , yi,t-1 , … , yi,1 | yi,0 , zi , ci) against the density of ci, we can obtain the conditional density P(yi,t , yi,t-1 , ... , yi,1 |yi,0 , zi). The objective function for the conditional MLE can be represented as: log (P (yi,t , yi,t-1, … , yi,1 | yi,0 , zi)).

Treating yi,0 as non-stochastic implicitly assumes the independence of yi,0 on zi. But in most cases in reality, yi,0 depends on ci and ci also depends on zi. An improvement on the approach above is to assume a density of yi,0 conditional on (ci, zi) and conditional likelihood P(yi,t , yi,t-1 , … , yt,1,yi,0 | ci, zi) can be obtained. By integrating this likelihood against the density of ci conditional on zi, we can obtain the conditional density P(yi,t , yi,t-1 , … , yi,1 , yi,0 | zi). The objective function for the conditional MLE [8] is log (P (yi,t , yi,t-1, … , yi,1 | yi,0 , zi)).

Based on the estimates for (δ, ρ) and the corresponding variance, values of the coefficients can be tested [9] and the average partial effect can be calculated. [10]

Related Research Articles

In the calculus of variations, a field of mathematical analysis, the functional derivative relates a change in a functional to a change in a function on which the functional depends.

<span class="mw-page-title-main">Partition function (statistical mechanics)</span> Function in thermodynamics and statistical physics

In physics, a partition function describes the statistical properties of a system in thermodynamic equilibrium. Partition functions are functions of the thermodynamic state variables, such as the temperature and volume. Most of the aggregate thermodynamic variables of the system, such as the total energy, free energy, entropy, and pressure, can be expressed in terms of the partition function or its derivatives. The partition function is dimensionless.

Empirical Bayes methods are procedures for statistical inference in which the prior probability distribution is estimated from the data. This approach stands in contrast to standard Bayesian methods, for which the prior distribution is fixed before any data are observed. Despite this difference in perspective, empirical Bayes may be viewed as an approximation to a fully Bayesian treatment of a hierarchical model wherein the parameters at the highest level of the hierarchy are set to their most likely values, instead of being integrated out. Empirical Bayes, also known as maximum marginal likelihood, represents a convenient approach for setting hyperparameters, but has been mostly supplanted by fully Bayesian hierarchical analyses since the 2000s with the increasing availability of well-performing computation techniques. It is still commonly used, however, for variational methods in Deep Learning, such as variational autoencoders, where latent variable spaces are high-dimensional.

In statistics, econometrics, and signal processing, an autoregressive (AR) model is a representation of a type of random process; as such, it can be used to describe certain time-varying processes in nature, economics, behavior, etc. The autoregressive model specifies that the output variable depends linearly on its own previous values and on a stochastic term ; thus the model is in the form of a stochastic difference equation which should not be confused with a differential equation. Together with the moving-average (MA) model, it is a special case and key component of the more general autoregressive–moving-average (ARMA) and autoregressive integrated moving average (ARIMA) models of time series, which have a more complicated stochastic structure; it is also a special case of the vector autoregressive model (VAR), which consists of a system of more than one interlocking stochastic difference equation in more than one evolving random variable.

In statistics, omitted-variable bias (OVB) occurs when a statistical model leaves out one or more relevant variables. The bias results in the model attributing the effect of the missing variables to those that were included.

Panel (data) analysis is a statistical method, widely used in social science, epidemiology, and econometrics to analyze two-dimensional panel data. The data are usually collected over time and over the same individuals and then a regression is run over these two dimensions. Multidimensional analysis is an econometric method in which data are collected over more than two dimensions.

Stochastic dominance is a partial order between random variables. It is a form of stochastic ordering. The concept arises in decision theory and decision analysis in situations where one gamble can be ranked as superior to another gamble for a broad class of decision-makers. It is based on shared preferences regarding sets of possible outcomes and their associated probabilities. Only limited knowledge of preferences is required for determining dominance. Risk aversion is a factor only in second order stochastic dominance.

In statistics, a tobit model is any of a class of regression models in which the observed range of the dependent variable is censored in some way. The term was coined by Arthur Goldberger in reference to James Tobin, who developed the model in 1958 to mitigate the problem of zero-inflated data for observations of household expenditure on durable goods. Because Tobin's method can be easily extended to handle truncated and other non-randomly selected samples, some authors adopt a broader definition of the tobit model that includes these cases.

In statistics, M-estimators are a broad class of extremum estimators for which the objective function is a sample average. Both non-linear least squares and maximum likelihood estimation are special cases of M-estimators. The definition of M-estimators was motivated by robust statistics, which contributed new types of M-estimators. However, M-estimators are not inherently robust, as is clear from the fact that they include maximum likelihood estimators, which are in general not robust. The statistical procedure of evaluating an M-estimator on a data set is called M-estimation.

Bayesian linear regression is a type of conditional modeling in which the mean of one variable is described by a linear combination of other variables, with the goal of obtaining the posterior probability of the regression coefficients and ultimately allowing the out-of-sample prediction of the regressandconditional on observed values of the regressors. The simplest and most widely used version of this model is the normal linear model, in which given is distributed Gaussian. In this model, and under a particular choice of prior probabilities for the parameters—so-called conjugate priors—the posterior can be found analytically. With more arbitrarily chosen priors, the posteriors generally have to be approximated.

In probability theory and statistics, partial correlation measures the degree of association between two random variables, with the effect of a set of controlling random variables removed. When determining the numerical relationship between two variables of interest, using their correlation coefficient will give misleading results if there is another confounding variable that is numerically related to both variables of interest. This misleading information can be avoided by controlling for the confounding variable, which is done by computing the partial correlation coefficient. This is precisely the motivation for including other right-side variables in a multiple regression; but while multiple regression gives unbiased results for the effect size, it does not give a numerical value of a measure of the strength of the relationship between the two variables of interest.

<span class="mw-page-title-main">Quantile regression</span> Statistics concept

Quantile regression is a type of regression analysis used in statistics and econometrics. Whereas the method of least squares estimates the conditional mean of the response variable across values of the predictor variables, quantile regression estimates the conditional median of the response variable. Quantile regression is an extension of linear regression used when the conditions of linear regression are not met.

The Heckman correction is a statistical technique to correct bias from non-randomly selected samples or otherwise incidentally truncated dependent variables, a pervasive issue in quantitative social sciences when using observational data. Conceptually, this is achieved by explicitly modelling the individual sampling probability of each observation together with the conditional expectation of the dependent variable. The resulting likelihood function is mathematically similar to the tobit model for censored dependent variables, a connection first drawn by James Heckman in 1974. Heckman also developed a two-step control function approach to estimate this model, which avoids the computational burden of having to estimate both equations jointly, albeit at the cost of inefficiency. Heckman received the Nobel Memorial Prize in Economic Sciences in 2000 for his work in this field.

In statistics, the Breusch–Godfrey test is used to assess the validity of some of the modelling assumptions inherent in applying regression-like models to observed data series. In particular, it tests for the presence of serial correlation that has not been included in a proposed model structure and which, if present, would mean that incorrect conclusions would be drawn from other tests or that sub-optimal estimates of model parameters would be obtained.

In econometrics, Prais–Winsten estimation is a procedure meant to take care of the serial correlation of type AR(1) in a linear model. Conceived by Sigbert Prais and Christopher Winsten in 1954, it is a modification of Cochrane–Orcutt estimation in the sense that it does not lose the first observation, which leads to more efficiency as a result and makes it a special case of feasible generalized least squares.

In econometrics, the Arellano–Bond estimator is a generalized method of moments estimator used to estimate dynamic models of panel data. It was proposed in 1991 by Manuel Arellano and Stephen Bond, based on the earlier work by Alok Bhargava and John Denis Sargan in 1983, for addressing certain endogeneity problems. The GMM-SYS estimator is a system that contains both the levels and the first difference equations. It provides an alternative to the standard first difference GMM estimator.

Partial (pooled) likelihood estimation for panel data is a quasi-maximum likelihood method for panel analysis that assumes that density of given is correctly specified for each time period but it allows for misspecification in the conditional density of given .

In linear panel analysis, it can be desirable to estimate the magnitude of the fixed effects, as they provide measures of the unobserved components. For instance, in wage equation regressions, fixed effects capture unobservables that are constant over time, such as motivation. Chamberlain's approach to unobserved effects models is a way of estimating the linear unobserved effects, under fixed effect assumptions, in the following unobserved effects model

Control functions are statistical methods to correct for endogeneity problems by modelling the endogeneity in the error term. The approach thereby differs in important ways from other models that try to account for the same econometric problem. Instrumental variables, for example, attempt to model the endogenous variable X as an often invertible model with respect to a relevant and exogenous instrument Z. Panel analysis uses special data properties to difference out unobserved heterogeneity that is assumed to be fixed over time.

<span class="mw-page-title-main">Homoscedasticity and heteroscedasticity</span> Statistical property

In statistics, a sequence of random variables is homoscedastic if all its random variables have the same finite variance; this is also known as homogeneity of variance. The complementary notion is called heteroscedasticity, also known as heterogeneity of variance. The spellings homoskedasticity and heteroskedasticity are also frequently used. Skedasticity comes from the Ancient Greek word skedánnymi, meaning “to scatter”. Assuming a variable is homoscedastic when in reality it is heteroscedastic results in unbiased but inefficient point estimates and in biased estimates of standard errors, and may result in overestimating the goodness of fit as measured by the Pearson coefficient.

References

  1. Greene, W. H. (2003). Econometric Analysis. Upper Saddle River, NJ: Prentice Hall.
  2. The model framework comes from Wooldridge, J. (2002). Econometric Analysis of Cross Section and Panel Data . Cambridge, Mass: MIT Press. p.  542. ISBN   9780262232197. But the author revises the model more general here.
  3. For more details, refer to: Cappé, O.; Moulines, E.; Ryden, T. (2005). "Part II: Parameter Inference". Inference in Hidden Markov Models. New York: Springer-Verlag. ISBN   9780387289823.
  4. Wooldridge, J. (2002). Econometric Analysis of Cross Section and Panel Data . Cambridge, Mass: MIT Press. p.  22. ISBN   9780262232197.
  5. For more details, refer to: Amemiya, Takeshi (1984). "Tobit models: A survey". Journal of Econometrics. 24 (1–2): 3–61. doi:10.1016/0304-4076(84)90074-5.
  6. Wooldridge, J. (2002): Econometric Analysis of Cross Section and Panel Data, MIT Press, Cambridge, Mass, pp 300.
  7. James J. Heckman (1981): Studies in Labor Markets, University of Chicago Press, Chapter Heterogeneity and State Dependence
  8. Greene, W. H. (2003), Econometric Analysis , Prentice Hall , Upper Saddle River, NJ .
  9. Whitney K. Newey, Daniel McFadden, Chapter 36 Large sample estimation and hypothesis testing, In: Robert F. Engle and Daniel L. McFadden, Editor(s), Handbook of Econometrics, Elsevier, 1994, Volume 4, Pages 2111–2245, ISSN   1573-4412, ISBN   9780444887665,
  10. Chamberlain, G. (1980), “Analysis of Covariance with Qualitative Data,” Journal of Econometrics 18, 5–46