EDTMP

Last updated
EDTMP
EDTMP.png
Names
Preferred IUPAC name
{Ethane-1,2-diylbis[nitrilobis(methylene)]}tetrakis(phosphonic acid)
Other names
Ethylenediamine tetra(methylene phosphonic acid), EDTMP
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.014.410 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C6H20N2O12P4/c9-21(10,11)3-7(4-22(12,13)14)1-2-8(5-23(15,16)17)6-24(18,19)20/h1-6H2,(H2,9,10,11)(H2,12,13,14)(H2,15,16,17)(H2,18,19,20) Yes check.svgY
    Key: NFDRPXJGHKJRLJ-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C6H20N2O12P4/c9-21(10,11)3-7(4-22(12,13)14)1-2-8(5-23(15,16)17)6-24(18,19)20/h1-6H2,(H2,9,10,11)(H2,12,13,14)(H2,15,16,17)(H2,18,19,20)
    Key: NFDRPXJGHKJRLJ-UHFFFAOYAV
  • O=P(O)(O)CN(CP(=O)(O)O)CCN(CP(=O)(O)O)CP(=O)(O)O
Properties
C6H20N2O12P4
Molar mass 436.13
Appearancesolid
limited
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

EDTMP or ethylenediamine tetra(methylene phosphonic acid) is a phosphonic acid. It has chelating and anti corrosion properties. EDTMP is the phosphonate analog of EDTA. [1] It is classified as a nitrogenous organic polyphosphonic acid.

Properties and applications

EDTMP is normally delivered as its sodium salt, which exhibits good solubility in water. Used in Water treatment as an antiscaling and anti corrosion agent, the corrosion inhibition of EDTMP is 3–5 times better than that of inorganic polyphosphate. It can degrade to Aminomethylphosphonic acid. [2] It shows excellent scale inhibition ability under temperature 200 °C. It functions by chelating with many metal ions.

The anti-cancer drug Samarium (153Sm) lexidronam is also derived from EDTMP.

Related Research Articles

Chelation is a type of bonding of ions and their molecules to metal ions. It involves the formation or presence of two or more separate coordinate bonds between a polydentate ligand and a single central metal atom. These ligands are called chelants, chelators, chelating agents, or sequestering agents. They are usually organic compounds, but this is not a necessity.

<span class="mw-page-title-main">Ethylenediaminetetraacetic acid</span> Chemical compound

Ethylenediaminetetraacetic acid (EDTA), also called EDTA acid after its own abbreviation, is an aminopolycarboxylic acid with the formula [CH2N(CH2CO2H)2]2. This white, water-insoluble solid is widely used to bind to iron (Fe2+/Fe3+) and calcium ions (Ca2+), forming water-soluble complexes even at neutral pH. It is thus used to dissolve Fe- and Ca-containing scale as well as to deliver iron ions under conditions where its oxides are insoluble. EDTA is available as several salts, notably disodium EDTA, sodium calcium edetate, and tetrasodium EDTA, but these all function similarly.

In organic chemistry, ozonolysis is an organic reaction where the unsaturated bonds are cleaved with ozone. Multiple carbon–carbon bond are replaced by carbonyl groups, such as aldehydes, ketones, and carboxylic acids. The reaction is predominantly applied to alkenes, but alkynes and azo compounds are also susceptible to cleavage. The outcome of the reaction depends on the type of multiple bond being oxidized and the work-up conditions.

<span class="mw-page-title-main">Phosphorous acid</span> Chemical compound (H3PO3)

Phosphorous acid is the compound described by the formula H3PO3. This acid is diprotic, not triprotic as might be suggested by this formula. Phosphorous acid is an intermediate in the preparation of other phosphorus compounds. Organic derivatives of phosphorous acid, compounds with the formula RPO3H2, are called phosphonic acids.

<span class="mw-page-title-main">Phosphoric acids and phosphates</span> Class of chemical species; phosphorus oxoacids and their deprotonated derivatives

In chemistry, a phosphoric acid, in the general sense, is a phosphorus oxoacid in which each phosphorus (P) atom is in the oxidation state +5, and is bonded to four oxygen (O) atoms, one of them through a double bond, arranged as the corners of a tetrahedron. Two or more of these PO4 tetrahedra may be connected by shared single-bonded oxygens, forming linear or branched chains, cycles, or more complex structures. The single-bonded oxygen atoms that are not shared are completed with acidic hydrogen atoms. The general formula of a phosphoric acid is Hn+2−2xPnO3n+1−x, where n is the number of phosphorus atoms and x is the number of fundamental cycles in the molecule's structure, between 0 and n + 2/2.

A corrosion inhibitor or anti-corrosive is a chemical compound added to a liquid or gas to decrease the corrosion rate of a metal that comes into contact with the fluid. The effectiveness of a corrosion inhibitor depends on fluid composition and dynamics. Corrosion inhibitors are common in industry, and also found in over-the-counter products, typically in spray form in combination with a lubricant and sometimes a penetrating oil. They may be added to water to prevent leaching of lead or copper from pipes.

<i>o</i>-Phenylenediamine Chemical compound

o-Phenylenediamine (OPD) is an organic compound with the formula C6H4(NH2)2. This aromatic diamine is an important precursor to many heterocyclic compounds. OPD is a white compound although samples appear darker owing to oxidation by air. It is isomeric with m-phenylenediamine and p-phenylenediamine.

Microbial corrosion, also called microbiologically influenced corrosion (MIC), microbially induced corrosion (MIC), or biocorrosion, is when microbes affect the electrochemical environment of the surface they are on. This usually involves building a biofilm, which can lead to either an increase in corrosion of the surface or, in a process called microbial corrosion inhibition, protect the surface from corrosion.

<span class="mw-page-title-main">Phosphonate</span> Organic compound containing C–PO(OR)2 groups

In organic chemistry, phosphonates or phosphonic acids are organophosphorus compounds containing C−PO(OR)2 groups, where R is an organic group. If R is hydrogen then the compound is a dialkyl phosphite, which is a different functional group. Phosphonic acids, typically handled as salts, are generally nonvolatile solids that are poorly soluble in organic solvents, but soluble in water and common alcohols.

<span class="mw-page-title-main">Etidronic acid</span> Chemical compound

Etidronic acid, also known as etidronate, is a non-nitrogenous bisphosphonate used as a medication, detergent, water treatment, and cosmetic.

<span class="mw-page-title-main">Benzotriazole</span> Chemical compound

Benzotriazole (BTA) is a heterocyclic compound with the chemical formula C6H5N3. Its five-membered ring contains three consecutive nitrogen atoms. This bicyclic compound may be viewed as fused rings of the aromatic compounds benzene and triazole. This white-to-light tan solid has a variety of uses, for instance, as a corrosion inhibitor for copper.

<span class="mw-page-title-main">Hydroxylammonium chloride</span> Chemical compound, [NH3OH]Cl

Hydroxylammonium chloride is a chemical compound with the formula [NH3OH]+Cl. It is the hydrochloric acid salt of hydroxylamine. Hydroxylamine is a biological intermediate in nitrification and in anammox which are important in the nitrogen cycle in soil and in wastewater treatment plants.

Bleaching of wood pulp is the chemical processing of wood pulp to lighten its color and whiten the pulp. The primary product of wood pulp is paper, for which whiteness is an important characteristic. These processes and chemistry are also applicable to the bleaching of non-wood pulps, such as those made from bamboo or kenaf.

<span class="mw-page-title-main">Cleaning agent</span> Substance used to remove dirt or other contaminants

Cleaning agents or hard-surface cleaners are substances used to remove dirt, including dust, stains, foul odors, and clutter on surfaces. Purposes of cleaning agents include health, beauty, removing offensive odors, and avoiding the spread of dirt and contaminants to oneself and others. Some cleaning agents can kill bacteria and clean at the same time. Others, called degreasers, contain organic solvents to help dissolve oils and fats.

<span class="mw-page-title-main">ATMP</span> Chemical compound

ATMP or aminotris(methylenephosphonic acid) is a phosphonic acid with chemical formula N(CH2PO3H2)3. It is a colorless solid. Its conjugate bases, such as [N(CH2PO3H)3]3-, have chelating properties.

<span class="mw-page-title-main">DTPMP</span> Chemical compound

DTPMP or diethylenetriamine penta(methylene phosphonic acid) is a phosphonic acid. It has chelating and anti corrosion properties.

<span class="mw-page-title-main">Vinylphosphonic acid</span> Chemical compound

Vinylphosphonic acid is an organophosphorus compound with the formula C2H3PO3H2. It is a colorless, low-melting solid, although commercial samples are often yellowish viscous liquids. It is used to prepare adhesives. As in other phosphonic acids, the phosphorus center is tetrahedral, being bonded to an organic group (vinyl in this case), two OH groups, and an oxygen.

Oilfield scale inhibition is the process of preventing the formation of scale from blocking or hindering fluid flow through pipelines, valves, and pumps used in oil production and processing. Scale inhibitors (SIs) are a class of specialty chemicals that are used to slow or prevent scaling in water systems. Oilfield scaling is the precipitation and accumulation of insoluble crystals (salts) from a mixture of incompatible aqueous phases in oil processing systems. Scale is a common term in the oil industry used to describe solid deposits that grow over time, blocking and hindering fluid flow through pipelines, valves, pumps etc. with significant reduction in production rates and equipment damages. Scaling represents a major challenge for flow assurance in the oil and gas industry. Examples of oilfield scales are calcium carbonate (limescale), iron sulfides, barium sulfate and strontium sulfate. Scale inhibition encompasses the processes or techniques employed to treat scaling problems.

N-Oleoylsarcosine (Sarkosyl O) is an amphiphilic oleic acid derivative having a sarcosine head group (N-methylglycine) which is used as a water-in-oil emulsifier and corrosion inhibitor.

Aminophosphonates are organophosphorus compounds with the formula (RO)2P(O)CR'2NR"2. These compounds are structural analogues of amino acids in which a carboxylic moiety is replaced by phosphonic acid or related groups. Acting as antagonists of amino acids, they inhibit enzymes involved in amino acid metabolism and thus affect the physiological activity of the cell. These effects may be exerted as antibacterial, plant growth regulatory or neuromodulatory. They can act as ligands, and heavy metal complexes with aminophosphonates have had medical applications investigated.

References

  1. Svara, J.; Weferling, N.; Hofmann, T. "Phosphorus Compounds, Organic," In 'Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2008. doi : 10.1002/14356007.a19_545.pub2.
  2. Klinger, J.; Lang, M.; Sacher, F.; Brauch, H.-J.; Maier, D.; Worch, E. (1998). "Formation of Glyphosate and AMPA During Ozonation of Waters Containing Ethylenediaminetetra(methylenephosphonic acid)". Ozone: Science & Engineering. 20 (2): 99–110. doi:10.1080/01919519808547279. ISSN   0191-9512.