Aminomethylphosphonic acid

Last updated
Aminomethylphosphonic acid
Aminomethylphosphonic acid.svg
Names
Preferred IUPAC name
(Aminomethyl)phosphonic acid
Other names
Aminomethanephosphonic acid
Identifiers
3D model (JSmol)
AbbreviationsAMPA; AMeP
ChEBI
ChemSpider
ECHA InfoCard 100.152.014 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/CH6NO3P/c2-1-6(3,4)5/h1-2H2,(H2,3,4,5)
    Key: MGRVRXRGTBOSHW-UHFFFAOYSA-N
  • InChI=1/CH6NO3P/c2-1-6(3,4)5/h1-2H2,(H2,3,4,5)
    Key: MGRVRXRGTBOSHW-UHFFFAOYAF
  • O=P(O)(O)CN
Properties
CH6NO3P
Molar mass 111.037 g·mol−1
AppearanceSolid
Melting point 338 to 344 °C (640 to 651 °F; 611 to 617 K)
Acidity (pKa)0.4
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Aminomethylphosphonic acid (AMPA) is a weak organic acid with a phosphonic acid group.

Contents

Application

AMPA apparently can be used as biocide and pesticide. [1] AMPA is also used in research to assess the exposure of glyphosate. [2]

Structures of AMPA in different pH ranges AMPA pKa.svg
Structures of AMPA in different pH ranges

Environmental fate

AMPA is one of the primary degradation products of the herbicide glyphosate [4] and the related chemical glyphosat-trimesium. [1] In addition, it is a transformation product of aminopolyphosphonates used as antiscalants in many applications like in European laundry additives. [5]

AMPA has the potential to be broken down further by manganese oxide in laboratory conditions, however in soil manganese oxide is usually only present in trace amounts. [6] Microbial degradation of AMPA is the more likely degradation pathway, where it degrades into phosphoric acid [7] [8] and ultimately to carbon dioxide and inorganic phosphate. [9]

Toxicity

AMPA has toxicity which is comparable to that of glyphosate and it is therefore considered to be of similar toxicological concern (harmful in greater than 0.5 parts per million) as glyphosate itself. [10]

Related Research Articles

<span class="mw-page-title-main">Pesticide</span> Substance used to destroy pests

Pesticides are substances that are used to control pests. They include herbicides, insecticides, nematicides, fungicides, and many others. The most common of these are herbicides, which account for approximately 50% of all pesticide use globally. Most pesticides are used as plant protection products, which in general protect plants from weeds, fungi, or insects. In general, a pesticide is a chemical or biological agent that deters, incapacitates, kills, or otherwise discourages pests. Target pests can include insects, plant pathogens, weeds, molluscs, birds, mammals, fish, nematodes (roundworms), and microbes that destroy property, cause nuisance, or spread disease, or are disease vectors. Along with these benefits, pesticides also have drawbacks, such as potential toxicity to humans and other species.

<span class="mw-page-title-main">Herbicide</span> Type of chemical used to kill unwanted plants

Herbicides, also commonly known as weed killers, are substances used to control undesired plants, also known as weeds. Selective herbicides control specific weed species while leaving the desired crop relatively unharmed, while non-selective herbicides kill plants indiscriminately. The combined effects of herbicides, nitrogen fertilizer, and improved cultivars has increased yields of major crops by 3x to 6x from 1900 to 2000.

<span class="mw-page-title-main">Roundup (herbicide)</span> Glyphosate-based herbicide made by Monsanto

Roundup is a brand name of herbicide originally produced by Monsanto, which Bayer acquired in 2018. Prior to the late-2010s formulations, it used broad-spectrum glyphosate-based herbicides. As of 2009, sales of Roundup herbicides still represented about 10 percent of Monsanto's revenue despite competition from Chinese producers of other glyphosate-based herbicides. The overall Roundup line of products represented about half of Monsanto's yearly revenue in 2009. The product is marketed to consumers by Scotts Miracle-Gro Company. In the late-2010s other non-glyphosate containing herbicides were also sold under the Roundup brand.

<span class="mw-page-title-main">Glyphosate</span> Systemic herbicide and crop desiccant

Glyphosate is a broad-spectrum systemic herbicide and crop desiccant. It is an organophosphorus compound, specifically a phosphonate, which acts by inhibiting the plant enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSP). It is used to kill weeds, especially annual broadleaf weeds and grasses that compete with crops. Its herbicidal effectiveness was discovered by Monsanto chemist John E. Franz in 1970. Monsanto brought it to market for agricultural use in 1974 under the trade name Roundup. Monsanto's last commercially relevant United States patent expired in 2000.

<span class="mw-page-title-main">Organophosphate</span> Organic compounds with the structure O=P(OR)3

In organic chemistry, organophosphates are a class of organophosphorus compounds with the general structure O=P(OR)3, a central phosphate molecule with alkyl or aromatic substituents. They can be considered as esters of phosphoric acid. Organophosphates are best known for their use as pesticides.

<span class="mw-page-title-main">Persistent organic pollutant</span> Organic compounds that are resistant to environmental degradation

Persistent organic pollutants (POPs) are organic compounds that are resistant to degradation through chemical, biological, and photolytic processes. They are toxic and adversely affect human health and the environment around the world. Because they can be transported by wind and water, most POPs generated in one country can and do affect people and wildlife far from where they are used and released.

<span class="mw-page-title-main">MCPA</span> Organic compound used as an herbicide

MCPA is a widely used phenoxy herbicide introduced in 1945. It selectively controls broad-leaf weeds in pasture and cereal crops. The mode of action of MCPA is as an auxin, which are growth hormones that naturally exist in plants.

<span class="mw-page-title-main">Phosphonate</span> Organic compound containing C–PO(OR)2 groups

In organic chemistry, phosphonates or phosphonic acids are organophosphorus compounds containing C−PO(OR)2 groups, where R is an organic group. If R is hydrogen then the compound is a dialkyl phosphite, which is a different functional group. Phosphonic acids, typically handled as salts, are generally nonvolatile solids that are poorly soluble in organic solvents, but soluble in water and common alcohols.

<span class="mw-page-title-main">Glufosinate</span> Broad-spectrum herbicide

Glufosinate is a naturally occurring broad-spectrum herbicide produced by several species of Streptomyces soil bacteria. Glufosinate is a non-selective, contact herbicide, with some systemic action. Plants may also metabolize bialaphos and phosalacine, other naturally occurring herbicides, directly into glufosinate. The compound irreversibly inhibits glutamine synthetase, an enzyme necessary for the production of glutamine and for ammonia detoxification, giving it antibacterial, antifungal and herbicidal properties. Application of glufosinate to plants leads to reduced glutamine and elevated ammonia levels in tissues, halting photosynthesis and resulting in plant death.

<span class="mw-page-title-main">Diphenylamine</span> Chemical compound

Diphenylamine is an organic compound with the formula (C6H5)2NH. The compound is a derivative of aniline, consisting of an amine bound to two phenyl groups. The compound is a colorless solid, but commercial samples are often yellow due to oxidized impurities. Diphenylamine dissolves well in many common organic solvents, and is moderately soluble in water. It is used mainly for its antioxidant properties. Diphenylamine is widely used as an industrial antioxidant, dye mordant and reagent and is also employed in agriculture as a fungicide and antihelmintic.

Polyethoxylated tallow amine refers to a range of non-ionic surfactants derived from animal fats (tallow). They are a class of polyethoxylated amines (POEAs). The abbreviation 'POEA' is often erroneously used to refer to POE-tallowamine. They are used primarily as emulsifiers and wetting agents for agrochemical formulations, such as pesticides and herbicides.

Organophosphorus chemistry is the scientific study of the synthesis and properties of organophosphorus compounds, which are organic compounds containing phosphorus. They are used primarily in pest control as an alternative to chlorinated hydrocarbons that persist in the environment. Some organophosphorus compounds are highly effective insecticides, although some are extremely toxic to humans, including sarin and VX nerve agents.

<span class="mw-page-title-main">Environmental impact of pesticides</span> Environmental effect

The environmental effects of pesticides describe the broad series of consequences of using pesticides. The unintended consequences of pesticides is one of the main drivers of the negative impact of modern industrial agriculture on the environment. Pesticides, because they are toxic chemicals meant to kill pest species, can affect non-target species, such as plants, animals and humans. Over 98% of sprayed insecticides and 95% of herbicides reach a destination other than their target species, because they are sprayed or spread across entire agricultural fields. Other agrochemicals, such as fertilizers, can also have negative effects on the environment.

The environmental impact of agriculture is the effect that different farming practices have on the ecosystems around them, and how those effects can be traced back to those practices. The environmental impact of agriculture varies widely based on practices employed by farmers and by the scale of practice. Farming communities that try to reduce environmental impacts through modifying their practices will adopt sustainable agriculture practices. The negative impact of agriculture is an old issue that remains a concern even as experts design innovative means to reduce destruction and enhance eco-efficiency. Though some pastoralism is environmentally positive, modern animal agriculture practices tend to be more environmentally destructive than agricultural practices focused on fruits, vegetables and other biomass. The emissions of ammonia from cattle waste continue to raise concerns over environmental pollution.

<span class="mw-page-title-main">Agricultural pollution</span> Type of pollution caused by agriculture

Agricultural pollution refers to biotic and abiotic byproducts of farming practices that result in contamination or degradation of the environment and surrounding ecosystems, and/or cause injury to humans and their economic interests. The pollution may come from a variety of sources, ranging from point source water pollution to more diffuse, landscape-level causes, also known as non-point source pollution and air pollution. Once in the environment these pollutants can have both direct effects in surrounding ecosystems, i.e. killing local wildlife or contaminating drinking water, and downstream effects such as dead zones caused by agricultural runoff is concentrated in large water bodies.

<span class="mw-page-title-main">2,4-Dichlorophenoxyacetic acid</span> Herbicide

2,4-Dichlorophenoxyacetic acid is an organic compound with the chemical formula Cl2C6H3OCH2CO2H. It is usually referred to by its ISO common name 2,4-D. It is a systemic herbicide that kills most broadleaf weeds by causing uncontrolled growth, but most grasses such as cereals, lawn turf, and grassland are relatively unaffected.

<span class="mw-page-title-main">Crop desiccation</span>

Pre-harvest crop desiccation refers to the application of an agent to a crop just before harvest to kill the leaves and/or plants so that the crop dries out from environmental conditions, or "dry-down", more quickly and evenly. In agriculture, the term desiccant is applied to an agent that promotes dry down, thus the agents used are not chemical desiccants, rather they are herbicides and/or defoliants used to artificially accelerate the drying of plant tissues. Desiccation of crops through the use of herbicides is practiced worldwide on a variety of food and non-food crops.

<span class="mw-page-title-main">Fluridone</span> Chemical compound

Fluridone is an organic compound that is used as aquatic herbicide often used to control invasive plants. It is used in the United States to control hydrilla and Eurasian watermilfoil among other species. Fluridone is sold as a solution and as a slow release solid because the herbicide level must be maintained for several weeks. The compound is a colorless solid.

Pesticide degradation is the process by which a pesticide is transformed into a benign substance that is environmentally compatible with the site to which it was applied. Globally, an estimated 1 to 2.5 million tons of active pesticide ingredients are used each year, mainly in agriculture. Forty percent are herbicides, followed by insecticides and fungicides. Since their initial development in the 1940s, multiple chemical pesticides with different uses and modes of action have been employed. Pesticides are applied over large areas in agriculture and urban settings. Pesticide use, therefore, represents an important source of diffuse chemical environmental inputs.

Glyphosate-based herbicides are usually made of a glyphosate salt that is combined with other ingredients that are needed to stabilize the herbicide formula and allow penetration into plants. The glyphosate-based herbicide Roundup was first developed by Monsanto in the 1970s. It is used most heavily on corn, soy, and cotton crops that have been genetically modified to be resistant to the herbicide. Some products include two active ingredients, such as Enlist Duo which includes 2,4-D as well as glyphosate. As of 2010, more than 750 glyphosate products were on the market. The names of inert ingredients used in glyphosate formulations are usually not listed on the product labels.

References

  1. 1 2 "(Aminomethyl)phosphonic acid". PubChem. NLM. Retrieved 10 July 2022.
  2. Fagan, John; Bohlen, Larry; Patton, Sharyle; Klein, Kendra (October 2020). "Organic diet intervention significantly reduces urinary glyphosate levels in U.S. children and adults". Environmental Research. 189: 109898. Bibcode:2020ER....189j9898F. doi: 10.1016/j.envres.2020.109898 . PMID   32797996.
  3. Zuliang Chen, Wenxiang He, Michael Beer, Mallavarapu Megharaj, Ravendra Naidu (2009-05-15). "Speciation of glyphosate, phosphate and aminomethylphosphonic acid in soil extracts by ion chromatography with inductively coupled plasma mass spectrometry with an octopole reaction system". Talanta. 78 (3): 852–856. doi:10.1016/j.talanta.2008.12.052. PMID   19269440.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. Environmental Fate of Glyphosate Archived 2012-04-20 at the Wayback Machine , Jeff Schuette, Department of Pesticide Regulation, California
  5. Schwientek, M.; Rügner, H.; Haderlein, S. B.; Schulz, W.; Wimmer, B.; Engelbart, L.; Bieger, S.; Huhn, C. (2024-07-23). "Glyphosate contamination in European rivers not from herbicide application?". Water Research: 122140. doi:10.1016/j.watres.2024.122140. ISSN   0043-1354.
  6. K. A. Barrett and M. B. McBride. Oxidative Degradation of Glyphosate and Aminomethylphosphonate by Manganese Oxide. Environ. Sci. Technol., 2005, 39 (23), pp 9223–9228
  7. Pipke R, Amrhein N. (1988) Isolation and characterization of a mutant of Arthrobacter sp. strain GLP-1 which utilizes the herbicide glyphosate as its sole source of phosphorus and nitrogen. Applied and Environmental Microbiology 54(11): 2868-2870.
  8. Forlani G, Mangiagalli A, Nielsen E, Suardi CM. (1999) Degradation of the phosphonate herbicide glyphosate in soil: Evidence for a possible involvement of unculturable microorganisms. Soil Biology and Biochemistry 31: 991-997
  9. Backgrounder: Glyphosate does not degrade to phosphorous acid in the environment. Monsanto. 2005
  10. Pesticide Residues in Food - 1997, FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group