Edoylerite | |
---|---|
General | |
Category | Chromate |
Formula (repeating unit) | Hg 32+ Cr 6+ O 4 S 2 |
IMA symbol | Eoy [1] |
Crystal system | Monoclinic |
Space group | P21/a |
Unit cell | a = 7.524 Å, b = 14.819 Å c = 7.443 Å; α=90.00° β=118.72°, γ=90.00° |
Identification | |
Color | Canary yellow to orangish yellow |
Crystal habit | Acicular to Prismatic crystals |
Cleavage | Distinct/Good {010}. Fair {101} |
Fracture | Sub-Conchoidal |
Tenacity | Brittle and Inflexible |
Luster | Adamantine |
Streak | yellow |
Diaphaneity | Opaque masses to transparent or translucent individual crystals |
Specific gravity | 7.11 |
Density | 7.13 g/cm3 |
Optical properties | Biaxial |
Birefringence | Weak |
Pleochroism | Weak with light grey colors |
Ultraviolet fluorescence | Nonfluorescent |
References | [2] [3] [4] [5] |
Edoylerite is a rare mercury containing mineral. Edoylerite was first discovered in 1961 by Edward H. Oyler, whom the mineral is named after, in a meter-sized boulder at the Clear Creek claim in San Benito County, California. The Clear Creek claim is located near the abandoned Clear Creek mercury mine. The material from the boulder underwent several analyses including, X-ray powder diffraction (XRD), a single crystal study, and a preliminary electron microprobe analysis (EMA). Using these analyses it was determined that this was a new mineral but the nature of the material at the time prevented further investigation. It was not until 1986, with the discovery of crystals large enough for a crystal structure determination and a sufficient quantity for a full mineralogical characterization, that the study was renewed. The new edoylerite crystals were found in the same area at the Clear Creek claim but were situated in an outcrop of silica-carbonate rock. This silica-carbonate rock was mineralized by cinnabar following the hydrothermal alteration of the serpentinite in the rock. Edoylerite is a primary alteration product of cinnabar. Though found with cinnabar, the crystals of edoylerite do not typically exceed 0.5mm in length. The ideal chemical formula for edoylerite is Hg 32+ Cr 6+ O 4 S 2 [2]
Edoylerite is found in association with cinnabar, terlinguaite, mercury, wattersite, deanesmithite, and opal. [4] When found with these minerals, it means that the edoylerite crystals form on the surface of the other minerals after the mercury mineralization. The minerals formed during the mercury mineralization, in rough order of abundance, are cinnabar, mercury, edgarbaileyite, metacinnabar, montroydite, eglestonite, calomel, an unidentified yellow massive cryptocrystalline mercury mineral, edoylerite, wattersite, giannellaite, mosesite, deanesmithite, and one occurrence of szmanskiite. [2] Edoylerite most commonly occurs with cinnabar and is a primary alteration product of cinnabar. Edoylerite is a rare mineral, as it has only been found at one locality, the Clear Creek claim in San Benito County, California near the Clear Creek mine. [2] At the edoylerite locality, the host hock is composed of quartz, chalcedony, opal, ferroan magnesite, dolomite, goethite, and minor chlorite. In spite of a considerable search, only microgram quantities of edoylerite have been found since the mineral was originally discovered in 1961. [2]
Edoylerite is a canary yellow to orangish-yellow mineral, with an adamantine luster. The crystals are transparent to translucent, but a large grouping of the, massive, material appears opaque. The average length of a crystal is 0.2mm. Edoylerite occurs as acicular to prismatic crystals that are elongated on the [101] axis which gives it a slender, needle-like crystal shape or a tabular/platy crystal shape. Its crystals are characterized by the {010}, {111}, {001}, and {101} faces. Edoylerite is brittle and inflexible with very good cleavage along the {010} and a fair cleavage on {101} planes. It exhibits subconchoidal fractures and is nonfluorescent and nonmagnetic. The measured density of edoylerite is 7.13 g/cm3. [2]
Edoylerite is optically biaxial, which means it will refract light along two axes. The refractive indices are all greater than 1.78. It displays weak pleochroism and strong bireflectance and absorption. In polished sections, Edoylerite is weakly bireflectant and weakly pleochroic with light gray colors. In plane-polarized light, edoylorite is bluish-gray to gray with brilliant pale yellow internal reflections. [2] The pleochroism changes color in the direction it is viewed. In the x-direction, the color is a lemon-yellow, the y-direction exhibits a lemon-yellow color and in the z-direction, the color is a darker lemon-yellow. [5]
In cold mineral acids, edoylerite is insoluble or only slightly soluble, but in aqua regia it dissolves slowly. After 24 hours in aqua regia at a constant temperature of 115oC under infrared radiation, the mineral turns greenish yellow. At higher temperatures in the same conditions, the mineral loses its mercury (Hg) and sulfur (S) atoms resulting in a change of color to yellowish-black. Upon cooling, it changes from yellowish black to a dark green. The green residue from this experiment gives the X-ray powder diffraction pattern of Cr2O3 (the synthetic equivalent of eskolaite. [2] Edoylerite is photosensitive and will turn an olive-green after several months of exposure to visible light. [4]
The empirical chemical formula for edoylerite is Hg 3.262+ Cr 0.976+ O 4 S 2.16. Simplified, the formula is Hg 32+ Cr 6+ O 4 S 2 [2] Wattersite, Hg1+4Hg2+Cr6+O6, and deanesmithite, Hg1+2Hg2+3Cr6+O5S2, are related species of edoylerite and are chemically similar, however their bonds . The difference between wattersite and edoylerite is the bonds. There are no Hg-S chains in the structure. The difference between deanesmithite and edoylerite is that three of the four Hg2+ are in distorted octahedral coordination. This equates to the unit cell dimension being similar but not exact. [3]
Oxide | wt% |
---|---|
Hg | 51.31 |
HgO | 27.70 |
CrO3 | 12.79 |
S | 8.20 |
Total | 100.00 |
Edoylerite is in the monoclinic crystal system, with space group P21/a. The unit cell dimensions are a=7.524(7) Å, b=14.819(8) Å, c=7.443(5) Å, α=90.00°, β=118.72(5)°, γ=90.00°. [4]
d-spacing | Intensity | hkl |
---|---|---|
5.94 Å | 40 | 011 |
4.88 Å | 50 | 021 |
3.212 Å | 100 | 202 |
3.012 Å | 60 | 131 |
2.307 Å | 40 | - |
2.208 Å | 35 | - |
2.185 Å | 40 | - |
Cinnabar, or cinnabarite, is the bright scarlet to brick-red form of mercury(II) sulfide (HgS). It is the most common source ore for refining elemental mercury and is the historic source for the brilliant red or scarlet pigment termed vermilion and associated red mercury pigments.
Pleochroism is an optical phenomenon in which a substance has different colors when observed at different angles, especially with polarized light.
Zoisite, first known as saualpite, after its type locality, is a calcium aluminium hydroxy sorosilicate belonging to the epidote group of minerals. Its chemical formula is Ca2Al3(SiO4)(Si2O7)O(OH).
Cristobalite is a mineral polymorph of silica that is formed at very high temperatures. It has the same chemical formula as quartz, SiO2, but a distinct crystal structure. Both quartz and cristobalite are polymorphs with all the members of the quartz group, which also include coesite, tridymite and stishovite. It is named after Cerro San Cristóbal in Pachuca Municipality, Hidalgo, Mexico.
Epidote is a calcium aluminium iron sorosilicate mineral.
Cordierite (mineralogy) or iolite (gemology) is a magnesium iron aluminium cyclosilicate. Iron is almost always present and a solid solution exists between Mg-rich cordierite and Fe-rich sekaninaite with a series formula: (Mg,Fe)2Al3(Si5AlO18) to (Fe,Mg)2Al3(Si5AlO18). A high-temperature polymorph exists, indialite, which is isostructural with beryl and has a random distribution of Al in the (Si,Al)6O18 rings.
Natrolite is a tectosilicate mineral species belonging to the zeolite group. It is a hydrated sodium and aluminium silicate with the formula Na2Al2Si3O10 · 2H2O. The type locality is Hohentwiel, Hegau, Germany.
Illite is a group of closely related non-expanding clay minerals. Illite is a secondary mineral precipitate, and an example of a phyllosilicate, or layered alumino-silicate. Its structure is a 2:1 sandwich of silica tetrahedron (T) – alumina octahedron (O) – silica tetrahedron (T) layers. The space between this T-O-T sequence of layers is occupied by poorly hydrated potassium cations which are responsible for the absence of swelling. Structurally, illite is quite similar to muscovite with slightly more silicon, magnesium, iron, and water and slightly less tetrahedral aluminium and interlayer potassium. The chemical formula is given as (K,H3O)(Al,Mg,Fe)2(Si,Al)4O10[(OH)2·(H2O)], but there is considerable ion (isomorphic) substitution. It occurs as aggregates of small monoclinic grey to white crystals. Due to the small size, positive identification usually requires x-ray diffraction or SEM-EDS analysis. Illite occurs as an altered product of muscovite and feldspar in weathering and hydrothermal environments; it may be a component of sericite. It is common in sediments, soils, and argillaceous sedimentary rocks as well as in some low grade metamorphic rocks. The iron-rich member of the illite group, glauconite, in sediments can be differentiated by x-ray analysis.
Vauxite is a phosphate mineral with the chemical formula Fe2+Al2(PO4)2(OH)2·6(H2O). It belongs to the laueite – paravauxite group, paravauxite subgroup, although Mindat puts it as a member of the vantasselite Al4(PO4)3(OH)3·9H2O group. There is no similarity in structure between vauxite and paravauxite Fe2+Al2(PO4)2(OH)2·8H2O or metavauxite Fe3+Al2(PO4)2(OH)2·8H2O, even though they are closely similar chemically, and all minerals occur together as secondary minerals. Vauxite was named in 1922 for George Vaux Junior (1863–1927), an American attorney and mineral collector.
Terlinguaite is the naturally occurring mineral with formula Hg2ClO. It is formed by the weathering of other mercury-containing minerals. It was discovered in 1900 in the Terlingua District of Brewster County, Texas, for which it is named. Its color is yellow, greenish yellow, brown, or olive green.
Livingstonite is a mercury antimony sulfosalt mineral. It occurs in low-temperature hydrothermal veins associated with cinnabar, stibnite, sulfur and gypsum.
Corderoite is an extremely rare mercury sulfide chloride mineral with formula Hg3S2Cl2. It crystallizes in the isometric crystal system. It is soft, 1.5 to 2 on the Mohs scale, and varies in color from light gray to black and rarely pink or yellow.
Atheneite is a rare palladium, mercury arsenide mineral with the chemical formula (Pd,Hg)3 associated with palladium–gold deposits. Its composition parallels that of arsenopalladinite, isomertieite and meritieite-II.
Mosesite is a very rare mineral found in few locations. It is a mercury mineral found as an accessory in deposits of mercury, often in conjunction with limestone. It is known to be found in the U.S. states of Texas and Nevada, and the Mexican states of Guerrero and Querétaro. It was named after Professor Alfred J. Moses (1859–1920) for his contributions to the field of mineralogy in discovering several minerals found alongside mosesite. The mineral itself is various shades of yellow and a high occurrence of spinel twinning. It becomes isotropic when heated to 186 °C (367 °F).
Jeremejevite is an aluminium borate mineral with variable fluoride and hydroxide ions. Its chemical formula is Al6B5O15(F,OH)3. It is considered as one of the rarest, thus one of the most expensive stones. For nearly a century, it was considered as one of the rarest gemstones in the world.
Clearcreekite is a carbonate mineral, polymorphous with peterbaylissite. The chemical formula of clearcreekite is Hg1+3CO3(OH)∙2H2O. It has a pale greenish yellow color and streak with tabular subhedral crystals and good cleavage on {001}. It is transparent with vitreous luster and uneven fracture. Its density (calculated from the idealized formula) is 6.96 g/cm3. The mineral is monoclinic with the space group P2/c. Clearcreekite is an extremely rare mineral from the Clear Creek mercury mine, New Idria district, San Benito County, California. It was probably formed after the alteration of other mercury minerals such as cinnabar. The mineral is named after the locality where it was found.
Wakabayashilite is a rare arsenic, antimony sulfide mineral with formula [(As,Sb)6S9][As4S5].
Nambulite is a lithium bearing manganese silicate mineral with the chemical formula (Li,Na)Mn4Si5O14(OH). It is named after the mineralogist, Matsuo Nambu (born 1917) of Tohoko University, Japan, who is known for his research in manganese minerals. The mineral was first discovered in the Funakozawa Mine of northeastern Japan, a metasedimentary manganese ore.
The silver antimonide mineral dyscrasite has the chemical formula Ag3Sb. It is an opaque, silver white, metallic mineral which crystallizes in the orthorhombic crystal system. It forms pyramidal crystals up to 5 cm (2.0 in) and can also form cylindrical and prismatic crystals.
Wattersite is a rare mercury chromate mineral with the formula Hg+14Hg+2Cr+6O6. It occurs in association with native mercury and cinnabar in a hydrothermally altered serpentinite. It was first described from Clear Creek claim, San Benito County, California, USA in 1961. It was named to honor Californian mineral collector Lucius "Lu" Watters.