Electromethanogenesis is a form of electrofuel production where methane is produced by direct biological conversion of electrical current and carbon dioxide. [1] [2] [3] [4]
Methane producing technologies garnered interest from the scientific community prior to 2000, but electromethanogenesis did not become a significant area of interest until 2008. Publications concerning catalytic methanation have increased from 44 to over 130 since 2008. [4] Electromethanogenesis has drawn more research due to its proposed applications. The production of methane from electrical current may provide an approach to renewable energy storage. [1] [4] Electrical current produced from renewable energy sources may, through electromethanogenesis, be converted into methane which may then be used as a biofuel. [1] [4] It may also be a useful method for the capture of carbon dioxide which may be used for air purification. [1]
In nature, methane formation occurs biotically and abiotically. [1] [5] [6] Abiogenic methane is produced on a smaller scale and the required chemical reactions do not necessitate organic materials. [4] Biogenic methane is produced in anaerobic natural environments where methane forms as the result of the breakdown of organic materials by microbes—or microorganisms. [4] [7] Researchers have found that the biogenic methane production process can be replicated in a laboratory environment through electromethanogenesis. [4] [7] The reduction of CO2 in electromethanogenesis is facilitated by an electrical current at a biocathode in a microbial electrolysis cell (MEC) and with the help of microbes and electrons (Equation 1) or abiotically produced hydrogen (Equation 2). [1] [4] [6] [7]
(1) CO2 + 8H+ + 8e− ↔ CH4 + 2H2O
(2) CO2 + 4H2 ↔ CH4 + 2H2O
A biocathode is a cathode used in a microbial electrolysis cell during electromethanogenesis that utilizes microorganisms to catalyze the process of accepting electrons and protons from the anode. [8] A biocathode is usually made of a cheap material, such as carbon or graphite, like the anode in the MEC. [5] The microbe population that is placed on the biocathode must be able to pick up electrons from the electrode material (carbon or graphite) and convert those electrons to hydrogen. [8] [5]
The mechanism of electromethanogenesis is outlined in Figure 1. Water is introduced into the system with the anode, biocathode, and microbes. At the anode, microbes attract H2O molecules which are then oxidized after an electrical current is turned on from the power source. Oxygen is released from the anode side. The protons and electrons oxidized from the H2O move across the membrane where they move into the material that makes up the biocathode. The new microbe on the biocathode has the ability to transfer the new electrons from the biocathode material and convert them into protons. These protons are then used in the major pathway that drives methane production in electromethanogenesis—CO2 reduction. CO2 is brought in on the biocathode side of the system where it is reduced by the protons produced by the microorganisms to yield H2O and methane (CH4+). Methane is produced and can then be released from the biocathode side and stored. [4] [6] [7] [9]
One limitation is the energy loss in methane-producing bioelectrochemical systems. This occurs as a result of overpotentials occurring at the anode, membrane, and biocathode. The energy loss reduces efficiency significantly. [4] [6] [7] Another limitation is the biocathode. Because the biocathode is so important in electron exchange and methane formation, its make-up can have a dramatic effect on the efficiency of the reaction. [1] [4] Efforts are being made to improve the biocathodes used in electromethanogenesis through combining new and existing materials, reshaping the materials, or applying different "pre-treatments" to the biocathode surface, thereby increasing biocompatibility. [4] [6]
A fuel cell is an electrochemical cell that converts the chemical energy of a fuel and an oxidizing agent into electricity through a pair of redox reactions. Fuel cells are different from most batteries in requiring a continuous source of fuel and oxygen to sustain the chemical reaction, whereas in a battery the chemical energy usually comes from metals and their ions or oxides that are commonly already present in the battery, except in flow batteries. Fuel cells can produce electricity continuously for as long as fuel and oxygen are supplied.
In chemistry and manufacturing, electrolysis is a technique that uses direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of elements from naturally occurring sources such as ores using an electrolytic cell. The voltage that is needed for electrolysis to occur is called the decomposition potential. The word "lysis" means to separate or break, so in terms, electrolysis would mean "breakdown via electricity".
Redox is a type of chemical reaction in which the oxidation states of atoms are changed. Redox reactions are characterized by the actual or formal transfer of electrons between chemical species, most often with one species undergoing oxidation while another species undergoes reduction. The chemical species from which the electron is removed is said to have been oxidized, while the chemical species to which the electron is added is said to have been reduced. In other words:
Anaerobic respiration is respiration using electron acceptors other than molecular oxygen (O2). Although oxygen is not the final electron acceptor, the process still uses a respiratory electron transport chain.
Electrolysis of water is the process of using electricity to decompose water into oxygen and hydrogen gas by a process called electrolysis. Hydrogen gas released in this way can be used as hydrogen fuel, or remixed with the oxygen to create oxyhydrogen gas, which is used in welding and other applications.
Microbial metabolism is the means by which a microbe obtains the energy and nutrients it needs to live and reproduce. Microbes use many different types of metabolic strategies and species can often be differentiated from each other based on metabolic characteristics. The specific metabolic properties of a microbe are the major factors in determining that microbe's ecological niche, and often allow for that microbe to be useful in industrial processes or responsible for biogeochemical cycles.
Microbial fuel cell (MFC) is a type of bioelectrochemical fuel cell system that generates electric current by diverting electrons produced from the microbially oxidation of reduced compounds on the anode to oxidized compounds on the cathode through an external electrical circuit. MFCs can be grouped into two general categories: mediated and unmediated. The first MFCs, demonstrated in the early 20th century, used a mediator: a chemical that transfers electrons from the bacteria in the cell to the anode. Unmediated MFCs emerged in the 1970s; in this type of MFC the bacteria typically have electrochemically active redox proteins such as cytochromes on their outer membrane that can transfer electrons directly to the anode. In the 21st century MFCs have started to find commercial use in wastewater treatment.
Aluminium smelting is the process of extracting aluminium from its oxide, alumina, generally by the Hall-Héroult process. Alumina is extracted from the ore bauxite by means of the Bayer process at an alumina refinery.
Electrohydrogenesis or biocatalyzed electrolysis is the name given to a process for generating hydrogen gas from organic matter being decomposed by bacteria. This process uses a modified fuel cell to contain the organic matter and water. A small amount, 0.2–0.8 V of electricity is used, the original article reports an overall energy efficiency of 288% can be achieved. This work was reported by Cheng and Logan.
An enzymatic biofuel cell is a specific type of fuel cell that uses enzymes as a catalyst to oxidize its fuel, rather than precious metals. Enzymatic biofuel cells, while currently confined to research facilities, are widely prized for the promise they hold in terms of their relatively inexpensive components and fuels, as well as a potential power source for bionic implants.
A membrane electrode assembly (MEA) is an assembled stack of proton-exchange membranes (PEM) or alkali anion exchange membrane (AAEM), catalyst and flat plate electrode used in fuel cells and electrolyzers.
A microbial electrolysis cell (MEC) is a technology related to Microbial fuel cells (MFC). Whilst MFCs produce an electric current from the microbial decomposition of organic compounds, MECs partially reverse the process to generate hydrogen or methane from organic material by applying an electric current. The electric current would ideally be produced by a renewable source of power. The hydrogen or methane produced can be used to produce electricity by means of an additional PEM fuel cell or internal combustion engine.
Bioelectrogenesis is the generation of electricity by living organisms, a phenomenon that belongs to the science of electrophysiology. In biological cells, electrochemically active transmembrane ion channel and transporter proteins, such as the sodium-potassium pump, make electricity generation possible by maintaining a voltage imbalance from an electrical potential difference between the intracellular and extracellular space. The sodium-potassium pump simultaneously releases three Na ions away from, and influxes two K ions towards, the intracellular space. This generates an electrical potential gradient from the uneven charge separation created. The process consumes metabolic energy in the form of ATP.
A Bioelectrochemical reactor is a type of bioreactor where bioelectrochemical processes are used to degrade/produce organic materials using microorganisms. This bioreactor is divided in two parts: The anode, where the oxidation reaction takes place; And the cathode, where the reduction occurs. At these sites, electrons are passed to and from microbes to power reduction of protons, breakdown of organic waste, or other desired processes. They are used in microbial electrosynthesis, environmental remediation, and electrochemical energy conversion. Examples of bioelectrochemical reactors include microbial electrolysis cells, microbial fuel cells, enzymatic biofuel cells, electrolysis cells, microbial electrosynthesis cells, and biobatteries.
Microbial electrosynthesis (MES) is a form of microbial electrocatalysis in which electrons are supplied to living microorganisms via a cathode in an electrochemical cell by applying an electric current. The electrons are then used by the microorganisms to reduce carbon dioxide to yield industrially relevant products. The electric current would ideally be produced by a renewable source of power. This process is the opposite to that employed in a microbial fuel cell, in which microorganisms transfer electrons from the oxidation of compounds to an anode to generate an electric current.
Electrofuels or e-fuels are an emerging class of carbon-neutral drop-in replacement fuels that are made by storing electrical energy from renewable sources in the chemical bonds of liquid or gas fuels. They are an alternative to aviation biofuel. The primary targets are butanol, biodiesel, and hydrogen, but include other alcohols and carbon-containing gases such as methane and butane.
Polymer electrolyte membrane(PEM) electrolysis is the electrolysis of water in a cell equipped with a solid polymer electrolyte (SPE) that is responsible for the conduction of protons, separation of product gases, and electrical insulation of the electrodes. The PEM electrolyzer was introduced to overcome the issues of partial load, low current density, and low pressure operation currently plaguing the alkaline electrolyzer. It involves a proton-exchange membrane.
Geopsychrobacter electrodiphilus is a species of bacteria, the type species of its genus. It is a psychrotolerant member of its family, capable of attaching to the anodes of sediment fuel cells and harvesting electricity by oxidation of organic compounds to carbon dioxide and transferring the electrons to the anode.
Biological photovoltaics (BPV) is an energy-generating technology which uses oxygenic photoautotrophic organisms, or fractions thereof, to harvest light energy and produce electrical power. Biological photovoltaic devices are a type of biological electrochemical system, or microbial fuel cell, and are sometimes also called photo-microbial fuel cells or “living solar cells”. In a biological photovoltaic system, electrons generated by photolysis of water are transferred to an anode. A relatively high-potential reaction takes place at the cathode, and the resulting potential difference drives current through an external circuit to do useful work. It is hoped that using a living organism as the light harvesting material, will make biological photovoltaics a cost-effective alternative to synthetic light-energy-transduction technologies such as silicon-based photovoltaics.
Microbial electrolysis carbon capture (MECC) is a carbon capture technique using microbial electrolysis cells during wastewater treatment. MECC results in net negative carbon emission wastewater treatment by removal of carbon dioxide (CO2) during the treatment process in the form of calcite (CaCO3), and production of profitable H2 gas.
|journal=
(help)