Electronic counter-countermeasure

Last updated

Electronic counter-countermeasures (ECCM) is a part of electronic warfare which includes a variety of practices which attempt to reduce or eliminate the effect of electronic countermeasures (ECM) on electronic sensors aboard vehicles, ships and aircraft and weapons such as missiles. ECCM is also known as electronic protective measures (EPM), chiefly in Europe. In practice, EPM often means resistance to jamming. A more detailed description defines it as the electronic warfare operations taken by a radar to offset the enemy's countermeasure. [1]

Contents

History

Ever since electronics have been used in battle in an attempt to gain superiority over the enemy, effort has been spent on techniques to reduce the effectiveness of those electronics. More recently, sensors and weapons are being modified to deal with this threat. One of the most common types of ECM is radar jamming or spoofing. This originated with the Royal Air Force's use of what they codenamed Window during World War II, which Americans referred to as chaff . [2] It was first used during the Hamburg raid on July 24-25, 1943. [3] Jamming also may have originated with the British during World War II, when they began jamming German radio communications. These efforts include the successful British disruption of German Luftwaffe navigational radio beams. [4]

In perhaps the first example of ECCM, the Germans increased their radio transmitter power in an attempt to 'burn through' or override the British jamming, which by necessity of the jammer being airborne or further away produced weaker signals. This is still one of the primary methods of ECCM today. For example, modern airborne jammers are able to identify incoming radar signals from other aircraft and send them back with random delays and other modifications in an attempt to confuse the opponent's radar set, making the 'blip' jump around wildly and become impossible to range. More powerful airborne radars means that it is possible to 'burn through' the jamming at much greater ranges by overpowering the jamming energy with the actual radar returns. The Germans were not really able to overcome the chaff spoofing very successfully and had to work around it (by guiding the aircraft to the target area and then having them visually acquire the targets).

Today, more powerful electronics with smarter software for operation of the radar might be able to better discriminate between a moving target like an aircraft and an almost stationary target like a chaff bundle. The technology powering modern sensors and seekers allow all successful systems partly due to ECCM designed into them. Today, electronic warfare is composed of ECM, ECCM and, electronic reconnaissance/intelligent (ELINT) activities. [5]

Examples of electronic counter-countermeasures include the American Big Crow program, which served as a Bear bomber and a standoff jammer. [6] It was a modified Air Force NKC-135A and was built to provide capability and flexibility of conducting varied and precision electronic warfare experiments. [7] Throughout its 20-year existence, the U.S. government developed and installed over 3,143 electronic counter-countermeasures to its array of weapons. [6] There is also the BAMS Project, which was funded by the Belgian government since 1982. This system, together with advanced microelectronics, also provided secure voice, data, and text communications under the most severe electronic warfare conditions. [8]

Specific ECCM techniques

The following are some examples of EPM (other than simply increasing the fidelity of sensors through techniques such as increasing power or improving discrimination):

ECM detection

Sensor logic may be programmed to be able to recognize attempts at spoofing (e.g., aircraft dropping chaff during terminal homing phase) and ignore them. Even more sophisticated applications of ECCM might be to recognize the type of ECM being used, and be able to cancel out the signal.

Pulse compression by "chirping", or linear frequency modulation

One of the effects of the pulse compression technique is boosting the apparent signal strength as perceived by the radar receiver. The outgoing radar pulses are chirped, that is, the frequency of the carrier is varied within the pulse, much like the sound of a cricket chirping. When the pulse reflects off a target and returns to the receiver, the signal is processed to add a delay as a function of the frequency. This has the effect of "stacking" the pulse so it seems stronger, but shorter in duration, to further processors. The effect can increase the received signal strength to above that of noise jamming. Similarly, jamming pulses (used in deception jamming) will not typically have the same chirp, so will not benefit from the increase in signal strength.

Frequency hopping

Frequency agility ("frequency hopping") may be used to rapidly switch the frequency of the transmitted energy, and receiving only that frequency during the receiving time window. This foils jammers which cannot detect this switch in frequency quickly enough or predict the next hop frequency, and switch their own jamming frequency accordingly during the receiving time window. The most advanced jamming techniques have a very wide and fast frequency range, and might possibly jam out an antijammer. [9]

This method is also useful against barrage jamming in that it forces the jammer to spread its jamming power across multiple frequencies in the jammed system's frequency range, reducing its power in the actual frequency used by the equipment at any one time. The use of spread-spectrum techniques allow signals to be spread over a wide enough spectrum to make jamming of such a wideband signal difficult.

Sidelobe blanking

Radar jamming can be effective from directions other than the direction the radar antenna is currently aimed. When jamming is strong enough, the radar receiver can detect it from a relatively low gain sidelobe. The radar, however, will process signals as if they were received in the main lobe. Therefore, jamming can be seen in directions other than where the jammer is located. To combat this, an omnidirectional antenna is used for a comparison signal. By comparing the signal strength as received by both the omnidirectional and the (directional) main antenna, signals can be identified that are not from the direction of interest. These signals are then ignored.

Polarization

Polarization can be used to filter out unwanted signals, such as jamming. If a jammer and receiver do not have the same polarization, the jamming signal will incur a loss that reduces its effectiveness. The four basic polarizations are linear horizontal, linear vertical, right-hand circular, and left-hand circular. The signal loss inherent in a cross polarized (transmitter different from receiver) pair is 3 dB for dissimilar types, and 17 dB for opposites.

Aside from power loss to the jammer, radar receivers can also benefit from using two or more antennas of differing polarization and comparing the signals received on each. This effect can effectively eliminate all jamming of the wrong polarization, although enough jamming may still obscure the actual signal.

Radiation homing

Another practice of ECCM is to program sensors or seekers to detect attempts at ECM and possibly even to take advantage of them. Specialized anti-radiation missiles have existed even before modern jammers to target radar sites and they can be repurposed to target ECM. [10] The jamming in this case effectively becomes a beacon announcing the presence and location of the transmitter. This makes the use of such ECM a difficult decision – it may serve to obscure an exact location from non-ARMs, but in doing so it must put the jamming vehicle at risk of being targeted and hit by ARMs.

Some modern fire-and-forget missiles like the Vympel R-77 and the AMRAAM use a combined approach, by using radar in the normal case, but switching to an antiradiation mode if the jamming is too powerful to allow them to find and track the target normally. This mode, called "home-on-jam", actually makes the missile's job easier, as the jammer usually puts out more power than normal radar return would.

See also

Related Research Articles

<span class="mw-page-title-main">Radar</span> Object detection system using radio waves

Radar is a system that uses radio waves to determine the distance (ranging), direction, and radial velocity of objects relative to the site. It is a radiodetermination method used to detect and track aircraft, ships, spacecraft, guided missiles, motor vehicles, map weather formations, and terrain.

<span class="mw-page-title-main">Signals intelligence</span> Intelligence-gathering by interception of signals

Signals intelligence (SIGINT) is the act and field of intelligence-gathering by interception of signals, whether communications between people or from electronic signals not directly used in communication. As classified and sensitive information is usually encrypted, signals intelligence may necessarily involve cryptanalysis. Traffic analysis—the study of who is signaling to whom and in what quantity—is also used to integrate information, and it may complement cryptanalysis.

<span class="mw-page-title-main">Doppler radar</span> Type of radar equipment

A Doppler radar is a specialized radar that uses the Doppler effect to produce velocity data about objects at a distance. It does this by bouncing a microwave signal off a desired target and analyzing how the object's motion has altered the frequency of the returned signal. This variation gives direct and highly accurate measurements of the radial component of a target's velocity relative to the radar. The term applies to radar systems in many domains like aviation, police radar detectors, navigation, meteorology, etc.

<span class="mw-page-title-main">Electronic warfare</span> Combat involving electronics and directed energy

Electromagnetic warfare or electronic warfare (EW) is warfare involving the use of the electromagnetic spectrum or directed energy to control the spectrum, attack an enemy, or impede enemy operations. The purpose of electromagnetic warfare is to deny the opponent the advantage of—and ensure friendly unimpeded access to—the EM spectrum. Electromagnetic warfare can be applied from air, sea, land, or space by crewed and uncrewed systems, and can target communication, radar, or other military and civilian assets.

Semi-active radar homing (SARH) is a common type of missile guidance system, perhaps the most common type for longer-range air-to-air and surface-to-air missile systems. The name refers to the fact that the missile itself is only a passive detector of a radar signal—provided by an external ("offboard") source—as it reflects off the target. Semi-active missile systems use bistatic continuous-wave radar.

<span class="mw-page-title-main">Active electronically scanned array</span> Type of phased-array radar

An active electronically scanned array (AESA) is a type of phased-array antenna, which is a computer-controlled antenna array in which the beam of radio waves can be electronically steered to point in different directions without moving the antenna. In the AESA, each antenna element is connected to a small solid-state transmit/receive module (TRM) under the control of a computer, which performs the functions of a transmitter and/or receiver for the antenna. This contrasts with a passive electronically scanned array (PESA), in which all the antenna elements are connected to a single transmitter and/or receiver through phase shifters under the control of the computer. AESA's main use is in radar, and these are known as active phased-array radar (APAR).

<span class="mw-page-title-main">Electronic countermeasure</span> Electronic device for deceiving detection systems

An electronic countermeasure (ECM) is an electrical or electronic device designed to trick or deceive radar, sonar, or other detection systems, like infrared (IR) or lasers. It may be used both offensively and defensively to deny targeting information to an enemy. The system may make many separate targets appear to the enemy, or make the real target appear to disappear or move about randomly. It is used effectively to protect aircraft from guided missiles. Most air forces use ECM to protect their aircraft from attack. It has also been deployed by military ships and recently on some advanced tanks to fool laser/IR guided missiles. It is frequently coupled with stealth advances so that the ECM systems have an easier job. Offensive ECM often takes the form of jamming. Self-protecting (defensive) ECM includes using blip enhancement and jamming of missile terminal homers.

<span class="mw-page-title-main">Pulse-Doppler radar</span> Type of radar system

A pulse-Doppler radar is a radar system that determines the range to a target using pulse-timing techniques, and uses the Doppler effect of the returned signal to determine the target object's velocity. It combines the features of pulse radars and continuous-wave radars, which were formerly separate due to the complexity of the electronics.

<span class="mw-page-title-main">Continuous-wave radar</span> Type of radar where a known stable frequency continuous wave radio energy is transmitted

Continuous-wave radar is a type of radar system where a known stable frequency continuous wave radio energy is transmitted and then received from any reflecting objects. Individual objects can be detected using the Doppler effect, which causes the received signal to have a different frequency from the transmitted signal, allowing it to be detected by filtering out the transmitted frequency.

A low-probability-of-intercept radar (LPIR) is a radar employing measures to avoid detection by passive radar detection equipment while it is searching for a target or engaged in target tracking. This characteristic is desirable in a radar because it allows finding and tracking an opponent without alerting them to the radar's presence. This also protects the radar installation from anti-radiation missiles (ARMs).

<span class="mw-page-title-main">AN/MPQ-64 Sentinel</span> American short-range air defense radar

The AN/MPQ-64 Sentinel is an X-band electronically steered pulse-Doppler 3D radar system used to alert and cue Short Range Air Defense (SHORAD) weapons to the locations of hostile targets approaching their front line forces. It is currently produced by Raytheon Missiles & Defense.

Radar jamming and deception is a form of electronic countermeasures (ECMs) that intentionally sends out radio frequency signals to interfere with the operation of radar by saturating its receiver with noise or false information. Concepts that blanket the radar with signals so its display cannot be read are normally known as jamming, while systems that produce confusing or contradictory signals are known as deception, but it is also common for all such systems to be referred to as jamming.

<span class="mw-page-title-main">Infrared countermeasure</span> Device designed to protect aircraft from infrared homing missiles

An infrared countermeasure (IRCM) is a device designed to protect aircraft from infrared homing missiles by confusing the missiles' infrared guidance system so that they miss their target. Heat-seeking missiles were responsible for about 80% of air losses in Operation Desert Storm. The most common method of infrared countermeasure is deploying flares, as the heat produced by the flares creates hundreds of targets for the missile.

The JY-14 is a medium to long range air defense radar produced and used by the People's Republic of China. It is capable of detecting multiple targets within its range and determine their parameters, tracking them even through surface clutter and ECM jamming. It utilizes a frequency-agile mode with 31 different frequencies, has a large band of ECCM operating parameter frequencies, and uses linear FM compression. This system can simultaneously track up to 100 targets and can feed the data to missile-interceptor batteries. It can track targets flying as high as 75,000 feet (22,900 m) and 186 miles (299 km) in distance.

A radar system uses a radio-frequency electromagnetic signal reflected from a target to determine information about that target. In any radar system, the signal transmitted and received will exhibit many of the characteristics described below.

The Combat Aircraft Systems Development & Integration Centre (CASDIC) is a laboratory of the Indian Defence Research and Development Organisation (DRDO). Located in Bangalore, Karnataka, India, It is one of the two DRDO laboratories involved in the research and development of airborne electronic warfare and mission avionics systems.

The Radio Research Laboratory (RRL), located on the campus of Harvard University, was an 800-person secret research laboratory during World War II. Under the U.S. Office of Scientific Research and Development (OSRD), it was a spinoff of the Radiation Laboratory at MIT and set up to develop electronic countermeasures to enemy radars and communications, as well as electronic counter-countermeasures (ECCM) to circumvent enemy ECM. The RRL was directed by Frederick E. Terman and operated between 1942 and 1946.

<span class="mw-page-title-main">Praetorian DASS</span> Military airplane defensive hardware and software

The EuroDASS Praetorian DASS is an integral part of Eurofighter Typhoon defensive Aid Sub-System (DASS) providing threat assessment, aircraft protection and support measures in extremely hostile and severe environments. As the DASS is fully integrated, it does not require additional pods that take up weapon stations or would influence the aircraft's aerodynamic performance. The modular nature of the DASS simplifies future upgrades and allows each partner nation or export customer the option to tailor the DASS to their individual needs.

An inverse monopulse seeker is a type of semi-active radar homing that offers significant advantages over earlier designs. The system requires electronics that can compare three signals at once, so this design did not become practically possible until the early 1970s. One of the first such examples was the Soviet Union R-40 air-to-air missiles used in MiG-25P introduced in service in 1970 and RAF's Skyflash missile introduced in 1978, an adaptation of the AIM-7 Sparrow that replaced the original Raytheon seeker with a monopulse model from Marconi, followed by a very similar conversion by Selenia for the Italian Aspide. The USAF adopted similar technology in the M model of the AIM-7 Sparrow, and such designs are universal in semi-active designs today.

The AR-320 is a 3D early warning radar developed by the UK's Plessey in partnership with US-based ITT-Gilfillan. The system combined the receiver electronics, computer systems and displays of the earlier Plessey AR-3D with a Gilfillan-developed transmitter and planar array antenna from their S320 series. The main advantage over the AR-3D was the ability to shift frequencies to provide a level of frequency agility and thus improve its resistance to jamming.

References

  1. Cheng, Chi-Hao; Tsui, James (2021). An Introduction to Electronic Warfare; from the First Jamming to Machine Learning Techniques. Oxon: CRC Press. p. 47. ISBN   978-87-7022-435-2.
  2. McArthur, Charles W. (1990). Operations Analysis in the United States Army Eighth Air Force in World War II, Vol. 4. Providence, R.I.: American Mathematical Society. p. 254. ISBN   0-8218-0158-9.
  3. Air Force Magazine. Air Force Association. 2007. p. 68.
  4. Sterling, Christopher H. (2008). Military Communications: From Ancient Times to the 21st Century. Santa Barbara, CA: ABC-CLIO. p. 138. ISBN   978-1-85109-732-6.
  5. Boyne, Walter J.; Fopp, Michael (2002). Air Warfare: an International Encyclopedia, Vol. 1, A-L. Santa Barbara, CA: ABC-CLIO. p. 191. ISBN   978-1-57607-345-2.
  6. 1 2 Against the Wind: 90 Years of Flight Test in the Miami Valley. Miami: History Office, Aeronautical Systems Center, Air Force Materiel Command. 1994. p. 96.
  7. Air Defense Trends. Fort Bliss, TX: US Army Air Defense School. 1974. p. 50.
  8. "BAMS Association Momentanee". Signals. 49: 128. 1995.
  9. "Russia surges ahead in radio-electronic warfare | Russia & India Report". 15 May 2014. Archived from the original on 2020-09-22. Retrieved 2015-12-22.
  10. "AGM-88 HARM". Archived from the original on 7 July 2014. Retrieved 20 May 2014.