This article needs additional citations for verification .(November 2008) |
Embalming chemicals are a variety of preservatives, sanitising and disinfectant agents, and additives used in modern embalming to temporarily prevent decomposition and restore a natural appearance for viewing a body after death. A mixture of these chemicals is known as embalming fluid and is used to preserve bodies of deceased persons for both funeral purposes and in medical research in anatomical laboratories. The period for which a body is embalmed is dependent on time, expertise of the embalmer and factors regarding duration of stay and purpose.
Typically, embalming fluid contains a mixture of formaldehyde, glutaraldehyde, methanol, and other solvents. The formaldehyde content generally ranges from 5–37% and the methanol content may range from 9–56%.
In the United States alone, about 20 million liters (roughly 5.3 million gallons) of embalming fluid are used every year. [1]
Embalming fluid acts to fix (denature) cellular proteins, meaning that they cannot act as a nutrient source for bacteria; embalming fluid also kills the bacteria themselves. Formaldehyde or glutaraldehyde fixes tissue or cells by irreversibly connecting a primary amine group in a protein molecule with a nearby nitrogen in a protein or DNA molecule through a -CH2- linkage called a Schiff base. The end result also creates the simulation, via color changes, of the appearance of blood flowing under the skin.
Modern embalming is not done with a single fixative. Instead, various chemicals are used to create a mixture, called an arterial solution, which is uniquely generated for the needs of each case. For example, a body needing to be repatriated overseas needs a higher index (percentage of diluted preservative chemical) than one simply for viewing (known in the United States and Canada as a funeral visitation) at a funeral home before cremation or burial.
Embalming fluid is injected into the arterial system of the deceased's abdomen and a trocar is inserted into the body cavity. The organs in the chest cavity and the abdomen are then punctured and drained of gas and fluid contents. Many other bodily fluids may also be displaced and removed from the body using the arterial system and in the case of cavity treatment aspirated from the body and replaced with a specialty fluid known as cavity fluid.
It is important to distinguish between an arterial chemical (or fluid), which is generally taken to be the product in its original composition, and an arterial solution, which is a diluted mixture of chemicals and made to order for each body. Non-preservative chemicals in an arterial solution are generally called "accessory chemicals" or co/pre-injectants, depending on their time of utilization.
Potential ingredients in an arterial solution include:
Prior to the advent of the modern range of embalming chemicals a variety of alternative additives have been used by embalmers, including epsom salts for edema cases,[ citation needed ] but these are of limited effectiveness and can be chalked up as "embalmer tricks", as the validity of their use has never been demonstrated by professional embalmers or mortuary science programs.
During the American Civil War, the Union Army, wanting to transport dead soldiers from the battlefields back home for burial, consulted with Dr. Thomas Holmes, who developed a technique that involved draining a corpse's blood and embalming it with a fluid made with arsenic for preservation. [1]
Embalming chemicals are generally produced by specialist manufacturers. The oldest embalming fluid company was founded as the Hill Fluid Company, in 1878, and was then incorporated by Dr. A.A. Bakker, as the Champion Company, in 1880, making The Champion Company 143 years old. Champion was still owned and operated by the Bakker Family until the death of Dr. Bakker's granddaughter, in the late 1970's. Champion still operates today and is still family owned by the Giankopulous Family. They continuously operate today. They are located in Springfield, OH. The Frigid Fluid Company was founded in 1892, followed by the Dodge Company in 1893, with other companies including Egyptian, now U.S. Chemical, as well as Kelco Supply Company (formerly L H Kellogg), Pierce Chemical Company (now owned by The Wilbert Company), Bondol Chemical Company, and Hydrol Chemical Company. There are many smaller and regional producers as well. Some funeral homes produce their own embalming fluids, although this practice has declined in recent decades as commercially available products have become of better quality and more readily available.
Following the EU Biocides Legislation some pressure was brought to reduce the use of formaldehyde. IARC Classes Formaldehyde as a Class 1 Carcinogen. There are alternatives to formaldehyde and phenol-based fluids, but these are technically not preservatives but rather sanitising agents and are not widely accepted. However, The Champion Company has always been aware of the safety of the embalmer and created and distributed lower exposure fluids with less HCHO and by the 1990s Champion was the first to create and distribute HCHO Free Fluids. Only The Champion and The Dodge Company sell those fluids.
Despite genuine concerns, formaldehyde is a naturally occurring substance, of which human beings produce approximately 1.5 oz a day as a normal part of a healthy metabolism. Formaldehyde also occurs naturally in many fruits, such as bananas, apples, and carrots, and does not bioaccumulate in either plants or animals. [4]
Formaldehyde works to fixate the tissue of the deceased. This is the characteristic that also makes concentrated formaldehyde hazardous when not handled using appropriate personal protective equipment. The carbon atom in formaldehyde, CH2O, carries a slight positive charge due to the high electronegativity of the oxygen double bonded with the carbon. The electropositive carbon will react with a negatively charged molecule and other electron-rich species. As a result, the carbon in the formaldehyde molecule bonds with electron-rich nitrogen groups called amines found in plant and animal tissue. This leads to formaldehyde cross-linking, bonding proteins with other proteins and DNA, rendering them dysfunctional or no longer useful. [5] This is the reason for usage of formaldehyde as a preservative, as it thus prevents cellular decay and renders the tissue unsuitable for use as a nutrient source for bacteria.
Formaldehyde is carcinogenic in humans and animals at excessive levels [6] [7] because the cross-linking can cause DNA to keep cells from halting the replication process. This unwarranted replication of cells can lead to cancer. [5] Unicellular organisms found in the soil and groundwater are also quite sensitive to cross-linking, experiencing damage at a concentration of 0.3 mg to 22 mg per liter. [6] Formaldehyde also affects aquatic invertebrates, with crustaceans being the most sensitive type. The range of concentration damaging them is 0.4 mg to 20 mg per liter. [6]
Formaldehyde released from the cremation of embalmed bodies enters the atmosphere and can remain suspended for up to 250 hours. [6] It is readily soluble [7] in water so it will bond with moisture in the atmosphere and rain down onto plants, animals, and water supplies below. As a result, formaldehyde content in precipitation can range from 110 μg to 1380 μg per liter. [6] These concerns notwithstanding, according to the American Chemistry Council, formaldehyde, as a ubiquitous chemical produced by living beings, is eminently biodegradable by both sunlight in air and bacteria in soil and water. [8]
The growth of the environment movement has caused some people to consider green burials where there are either no aldehyde-based chemicals used in the embalming process, or there is no embalming process at all. [9] Embalming fluid meeting specific criteria for such burials is commercially available, and although it is not as effective as aldehyde-based solutions, is approved by the Green Burial Association of America. Only the Champion Company has created and distributed their 4th generation of fluids called "Enigma", created in the early 2000's. All of Champion's enigma products have been approved by the green Burial Council.
Histology, also known as microscopic anatomy or microanatomy, is the branch of biology that studies the microscopic anatomy of biological tissues. Histology is the microscopic counterpart to gross anatomy, which looks at larger structures visible without a microscope. Although one may divide microscopic anatomy into organology, the study of organs, histology, the study of tissues, and cytology, the study of cells, modern usage places all of these topics under the field of histology. In medicine, histopathology is the branch of histology that includes the microscopic identification and study of diseased tissue. In the field of paleontology, the term paleohistology refers to the histology of fossil organisms.
Formaldehyde ( for-MAL-di-hide, fər-) (systematic name methanal) is an organic compound with the chemical formula CH2O and structure H−CHO, more precisely H2C=O. The compound is a pungent, colourless gas that polymerises spontaneously into paraformaldehyde. It is stored as aqueous solutions (formalin), which consists mainly of the hydrate CH2(OH)2. It is the simplest of the aldehydes (R−CHO). As a precursor to many other materials and chemical compounds, in 2006 the global production of formaldehyde was estimated at 12 million tons per year. It is mainly used in the production of industrial resins, e.g., for particle board and coatings. Small amounts also occur naturally.
Formic acid, systematically named methanoic acid, is the simplest carboxylic acid, and has the chemical formula HCOOH and structure H−C(=O)−O−H. It is an important intermediate in chemical synthesis and occurs naturally, most notably in some ants. Esters, salts and the anion derived from formic acid are called formates. Industrially, formic acid is produced from methanol.
Creosote is a category of carbonaceous chemicals formed by the distillation of various tars and pyrolysis of plant-derived material, such as wood, or fossil fuel. They are typically used as preservatives or antiseptics.
Ethylene glycol is an organic compound with the formula (CH2OH)2. It is mainly used for two purposes: as a raw material in the manufacture of polyester fibers and for antifreeze formulations. It is an odorless, colorless, flammable, viscous liquid. It has a sweet taste, but is toxic in high concentrations. This molecule has been observed in outer space.
Lactic acid is an organic acid. It has the molecular formula C3H6O3. It is white in the solid state and it is miscible with water. When in the dissolved state, it forms a colorless solution. Production includes both artificial synthesis as well as natural sources. Lactic acid is an alpha-hydroxy acid (AHA) due to the presence of a hydroxyl group adjacent to the carboxyl group. It is used as a synthetic intermediate in many organic synthesis industries and in various biochemical industries. The conjugate base of lactic acid is called lactate (or the lactate anion). The name of the derived acyl group is lactoyl.
Decomposition or rot is the process by which dead organic substances are broken down into simpler organic or inorganic matter such as carbon dioxide, water, simple sugars and mineral salts. The process is a part of the nutrient cycle and is essential for recycling the finite matter that occupies physical space in the biosphere. Bodies of living organisms begin to decompose shortly after death. Animals, such as earthworms, also help decompose the organic materials. Organisms that do this are known as decomposers or detritivores. Although no two organisms decompose in the same way, they all undergo the same sequential stages of decomposition. The science which studies decomposition is generally referred to as taphonomy from the Greek word taphos, meaning tomb. Decomposition can also be a gradual process for organisms that have extended periods of dormancy.
Glutaraldehyde is an organic compound with the formula (CH2)3(CHO)2. The molecule consists of a five carbon chain doubly terminated with formyl (CHO) groups. It is usually used as a solution in water, and such solutions exists as a collection of hydrates, cyclic derivatives, and condensation products, several of which interconvert. Because the molecule has two aldehyde functional groups, glutaraldehyde can crosslink substances with primary amine groups, through condensation. Crosslinking can rigidify and deactivate proteins and other molecules that are critical for normal biological function, such as DNA, and so glutaraldehyde solutions are effective biocides and fixatives. It is sold under the brandnames Cidex and Glutaral. As a disinfectant, it is used to sterilize surgical instruments.
Embalming is the art and science of preserving human remains by treating them to forestall decomposition. This is usually done to make the deceased suitable for viewing as part of the funeral ceremony or keep them preserved for medical purposes in an anatomical laboratory. The three goals of embalming are sanitization, presentation, and preservation, with restoration being an important additional factor in some instances. Performed successfully, embalming can help preserve the body for many years. Embalming has a long, cross-cultural history, with many cultures giving the embalming processes religious meaning.
Putrefaction is the fifth stage of death, following pallor mortis, livor mortis, algor mortis, and rigor mortis. This process references the breaking down of a body of an animal post-mortem. In broad terms, it can be viewed as the decomposition of proteins, and the eventual breakdown of the cohesiveness between tissues, and the liquefaction of most organs. This is caused by the decomposition of organic matter by bacterial or fungal digestion, which causes the release of gases that infiltrate the body's tissues, and leads to the deterioration of the tissues and organs. The approximate time it takes putrefaction to occur is dependent on various factors. Internal factors that affect the rate of putrefaction include the age at which death has occurred, the overall structure and condition of the body, the cause of death, and external injuries arising before or after death. External factors include environmental temperature, moisture and air exposure, clothing, burial factors, and light exposure. Body farms are facilities that study the way various factors affect the putrefaction process.
Coffin birth, also known as postmortem fetal extrusion, is the expulsion of a nonviable fetus through the vaginal opening of the decomposing body of a deceased pregnant woman due to increasing pressure from intra-abdominal gases. This kind of postmortem delivery occurs very rarely during the decomposition of a body. The practice of chemical preservation, whereby chemical preservatives and disinfectant solutions are pumped into a body to replace natural body fluids, have made the occurrence of "coffin birth" so rare that the topic is rarely mentioned in international medical discourse.
A prosector is a person with the special task of preparing a dissection for demonstration, usually in medical schools or hospitals. Many important anatomists began their careers as prosectors working for lecturers and demonstrators in anatomy and pathology.
Setting the features is a mortuary term for the closing of the eyes and the mouth of a deceased person such that the cadaver is presentable as being in a state of rest and repose, and thus more suitable for viewing. While it is one of the first stages of embalming, it is also commonly done as a token of respect even when the deceased is not viewed or is directly cremated. Generally only when the deceased have specifically requested the body be untouched are the features left unset.
Natural burial is the interment of the body of a dead person in the soil in a manner that does not inhibit decomposition but allows the body to be naturally recycled. It is an alternative to typical contemporary Western burial methods and modern funerary customs.
Sodium formate, HCOONa, is the sodium salt of formic acid, HCOOH. It usually appears as a white deliquescent powder.
In the fields of histology, pathology, and cell biology, fixation is the preservation of biological tissues from decay due to autolysis or putrefaction. It terminates any ongoing biochemical reactions and may also increase the treated tissues' mechanical strength or stability. Tissue fixation is a critical step in the preparation of histological sections, its broad objective being to preserve cells and tissue components and to do this in such a way as to allow for the preparation of thin, stained sections. This allows the investigation of the tissues' structure, which is determined by the shapes and sizes of such macromolecules as proteins and nucleic acids.
A cadaver, often known as a corpse, is a dead human body. Cadavers are used by medical students, physicians and other scientists to study anatomy, identify disease sites, determine causes of death, and provide tissue to repair a defect in a living human being. Students in medical school study and dissect cadavers as a part of their education. Others who study cadavers include archaeologists and arts students. In addition, a cadaver may be used in the development and evaluation of surgical instruments.
The human body and even its individual body fluids may be conceptually divided into various fluid compartments, which, although not literally anatomic compartments, do represent a real division in terms of how portions of the body's water, solutes, and suspended elements are segregated. The two main fluid compartments are the intracellular and extracellular compartments. The intracellular compartment is the space within the organism's cells; it is separated from the extracellular compartment by cell membranes.
Isopropyl alcohol is a colorless, flammable organic compound with a pungent alcoholic odor.
A hydrophile is a molecule or other molecular entity that is attracted to water molecules and tends to be dissolved by water.
{{cite web}}
: CS1 maint: multiple names: authors list (link)