Embryo space colonization

Last updated

8-cell embryo for transfer in in-vitro fertilization Embryo, 8 cells.jpg
8-cell embryo for transfer in in-vitro fertilization

Embryo space colonization is a theoretical interstellar space colonization concept that involves sending a robotic mission to a habitable terrestrial planet, dwarf planet, minor planet or natural satellite transporting frozen early-stage human embryos or the technological or biological means to create human embryos. [1] [2] The proposal circumvents the most severe technological problems of other mainstream interstellar colonization concepts. In contrast to the sleeper ship proposal, it does not require the more technically challenging 'freezing' of fully developed humans (see cryonics).

Contents

Various concepts

Embryo space colonization concepts involve various concepts of delivering the embryos from Earth to an extrasolar planet around another star system.

Mission at target planet

Regardless of the cargo used in any embryo space colonization scenario, the basic concept is that upon arrival of the embryo-carrying spacecraft (EIS) at the target planet, fully autonomous robots would build the first settlement on the planet and start growing food. More ambitiously, the planet may be terraformed first. [1] [2] Thereafter the first embryos could be unfrozen (or created using biosequenced or natural sperm and egg cells as outlined above).

In any event, one of the technologies needed for the proposal are artificial uteri. [1] [2] The embryos would need to develop in such artificial uteri until a large enough population existed to procreate by natural biological means.

Comparison to other interstellar colonization concepts

Difficulties in implementing the concept

Artist's impression from 2005 of the planet HD 69830 d. Embryo space colonization depends on the existence of a habitable terrestrial exoplanet. Artwork showing a blurred globe and other celestial bodies, inspired by the asteroid belt of HD 69830.jpg
Artist's impression from 2005 of the planet HD 69830 d. Embryo space colonization depends on the existence of a habitable terrestrial exoplanet.

Like every proposal for interstellar colonization, embryo space colonization depends on solutions to still-unsolved technological problems. Some of these are:

Further unknowns that affect the feasibility of embryo space colonization are:

See also

Notes

  1. 1 2 3 4 Crowl, Adam; et al. "Embryo Space Colonisation to Overcome the Interstellar Time Distance Bottleneck". Journal of the British Interplnanetary Society, 65, 283-285, 2012.
  2. 1 2 3 4 Lucas, Paul (21 June 2004). "Cruising the Infinite: Strategies for Human Interstellar Travel". Strange Horizons. Archived from the original on 14 November 2006. Retrieved 24 December 2006.
  3. Shahbazi, Marta N.; Jedrusik, Agnieszka; Vuoristo, Sanna; Recher, Gaelle; Hupalowska, Anna; Bolton, Virginia; Fogarty, Norah M. E.; Campbell, Alison; Devito, Liani G.; Ilic, Dusko; Khalaf, Yakoub; Niakan, Kathy K.; Fishel, Simon; Zernicka-Goetz, Magdalena (4 May 2016). "Self-organization of the human embryo in the absence of maternal tissues". Nature Cell Biology. Springer Science and Business Media LLC. 18 (6): 700–708. doi:10.1038/ncb3347. ISSN   1465-7392. PMC   5049689 . PMID   27144686.
  4. Morber, Jenny (26 April 2017). "Should We Study Human Embryos Beyond 14 Days?". PBS Socal. Retrieved 23 August 2018.

Related Research Articles

<span class="mw-page-title-main">Interstellar travel</span> Hypothetical travel between stars or planetary systems

Interstellar travel is the hypothetical travel of spacecraft from one star system, solitary star, or planetary system to another. Interstellar travel is expected to prove much more difficult than interplanetary spaceflight due to the vast difference in the scale of the involved distances. Whereas the distance between any two planets in the Solar System is less than 55 astronomical units (AU), stars are typically separated by hundreds of thousands of AU, causing these distances to typically be expressed instead in light-years. Because of the vastness of these distances, non-generational interstellar travel based on known physics would need to occur at a high percentage of the speed of light; even so, travel times would be long, at least decades and perhaps millennia or longer.

<span class="mw-page-title-main">Interplanetary spaceflight</span> Crewed or uncrewed travel between stars or planets

Interplanetary spaceflight or interplanetary travel is the crewed or uncrewed travel between stars and planets, usually within a single planetary system. In practice, spaceflights of this type are confined to travel between the planets of the Solar System. Uncrewed space probes have flown to all the observed planets in the Solar System as well as to dwarf planets Pluto and Ceres, and several asteroids. Orbiters and landers return more information than fly-by missions. Crewed flights have landed on the Moon and have been planned, from time to time, for Mars, Venus and Mercury. While many scientists appreciate the knowledge value that uncrewed flights provide, the value of crewed missions is more controversial. Science fiction writers propose a number of benefits, including the mining of asteroids, access to solar power, and room for colonization in the event of an Earth catastrophe.

<span class="mw-page-title-main">Outline of space science</span> Overview of and topical guide to space science

The following outline is provided as an overview and topical guide to space science:

<span class="mw-page-title-main">Space colonization</span> Concept of permanent human habitation outside of Earth

Space colonization is the use of outer space or celestial bodies other than Earth for permanent habitation or as extraterrestrial territory.

<span class="mw-page-title-main">Generation ship</span> Proposed ark method of interstellar travel in which humans regularly develop and reproduce

A generation ship, or generation starship, is a hypothetical type of interstellar ark starship that travels at sub-light speed. Since such a ship might require hundreds to thousands of years to reach nearby stars, the original occupants of a generation ship would grow old and die, leaving their descendants to continue traveling.

<span class="mw-page-title-main">Space habitat</span> Type of space station, intended as a permanent settlement

A space habitat is a more advanced form of living quarters than a space station or habitation module, in that it is intended as a permanent settlement or green habitat rather than as a simple way-station or other specialized facility. No space habitat has been constructed yet, but many design concepts, with varying degrees of realism, have come both from engineers and from science-fiction authors.

A sleeper ship is a hypothetical type of crewed spacecraft, or starship in which most or all of the crew spend the journey in some form of hibernation or suspended animation. The only known technology that allows long-term suspended animation of humans is the freezing of early-stage human embryos through embryo cryopreservation, which is behind the concept of embryo space colonization.

<span class="mw-page-title-main">Uncrewed spacecraft</span> Spacecraft without people on board

Uncrewed spacecraft or robotic spacecraft are spacecraft without people on board. Uncrewed spacecraft may have varying levels of autonomy from human input; they may be remote controlled, remote guided or autonomous: they have a pre-programmed list of operations, which they will execute unless otherwise instructed. A robotic spacecraft for scientific measurements is often called a space probe or space observatory.

<i>The Case for Mars</i> Robert Zubrin book on potential colonization

The Case for Mars: The Plan to Settle the Red Planet and Why We Must is a nonfiction science book by Robert Zubrin, first published in 1996, and revised and updated in 2011.

The concept of self-replicating spacecraft, as envisioned by mathematician John von Neumann, has been described by futurists and has been discussed across a wide breadth of hard science fiction novels and stories. Self-replicating probes are sometimes referred to as von Neumann probes. Self-replicating spacecraft would in some ways either mimic or echo the features of living organisms or viruses.

<i>The Songs of Distant Earth</i> 1986 English-language utopian novel by Arthur C. Clarke

The Songs of Distant Earth is a 1986 science fiction novel by British writer Arthur C. Clarke, based upon his 1958 short story of the same title. He stated that it was his favourite of all his novels. Clarke also wrote a short step outline with the same title, published in Omni magazine and anthologised in The Sentinel in 1983.

<span class="mw-page-title-main">Astrochicken</span>

Astrochicken is the name given to a thought experiment expounded by theoretical physicist Freeman Dyson. An Astrochicken is a small, one-kilogram spacecraft, a self-replicating automaton that could explore space more efficiently than a crewed craft could due to its innovative mix of technology.

<span class="mw-page-title-main">Colonization of Mars</span> Proposed concepts for human settlements on Mars

Colonization or settlement of Mars is the theoretical migration of humans to Mars and the establishment of long-term human presence on the planet. The prospect has garnered interest from public space agencies and private corporations and has been extensively explored in science fiction writing, film, and art. Organizations have proposed plans for a human mission to Mars, the first step towards any colonization effort, but thus far no person has set foot on the planet, and there have been no return missions. However, landers and rovers have successfully explored the planetary surface and delivered information about conditions on the ground.

<span class="mw-page-title-main">Colonization of Venus</span> Proposed colonization of the planet Venus

The colonization of Venus has been a subject of many works of science fiction since before the dawn of spaceflight, and is still discussed from both a fictional and a scientific standpoint. However, with the discovery of Venus's extremely hostile surface environment, attention has largely shifted towards the colonization of the Moon and Mars instead, with proposals for Venus focused on habitats floating in the upper-middle atmosphere and on terraforming.

<span class="mw-page-title-main">Outline of space exploration</span> Overview of and topical guide to space exploration

The following outline is provided as an overview of and topical guide to space exploration.

<span class="mw-page-title-main">Human mission to Mars</span> Proposed concepts

The idea of sending humans to Mars has been the subject of aerospace engineering and scientific studies since the late 1940s as part of the broader exploration of Mars. Long-term proposals have included sending settlers and terraforming the planet. Proposals for human missions to Mars have come from agencies such as NASA, CNSA, the European Space Agency, Boeing, and SpaceX. Currently, only robotic landers and rovers have been on Mars. The farthest humans have been beyond Earth is the Moon, under the Apollo program.

<span class="mw-page-title-main">Rotating wheel space station</span> Space station concept

A rotating wheel space station, also known as a von Braun wheel, is a concept for a hypothetical wheel-shaped space station. Originally proposed by Konstantin Tsiolkovsky in 1903, the idea was expanded by Herman Potočnik in 1929.

Mars Piloted Orbital Station is a Russian concept for an orbital human mission to Mars, with several proposed configurations, including using a nuclear reactor to run an electric rocket engine. A 30-volume draft proposal was produced in 2005. The design for the proposed ship was proposed to be ready in 2012, and the ship itself in 2021. The concept did not undergo detailed design nor development.

<span class="mw-page-title-main">Mars to Stay</span> Mars colonization architecture proposing no return vehicles

Mars to Stay missions propose astronauts sent to Mars for the first time should intend to stay. Unused emergency return vehicles would be recycled into settlement construction as soon as the habitability of Mars becomes evident to the initial pioneers. Mars to Stay missions are advocated both to reduce cost and to ensure permanent settlement of Mars. Among many notable Mars to Stay advocates, former Apollo astronaut Buzz Aldrin has been particularly outspoken, suggesting in numerous forums "Forget the Moon, Let’s Head to Mars!" and, in June 2013, Aldrin promoted a crewed mission "to homestead Mars and become a two-planet species". In August 2015, Aldrin, in association with the Florida Institute of Technology, presented a "master plan", for NASA consideration, for astronauts, with a "tour of duty of ten years", to colonize Mars before the year 2040. The Mars Underground, Mars Homestead Project / Mars Foundation, Mars One, and Mars Artists Community advocacy groups and business organizations have also adopted Mars to Stay policy initiatives.

References