Endoscopic optical coherence tomography imaging

Last updated

Endoscopic optical coherence tomography
Intracoronary OCT imaging.png
Example of intracoronary optical coherence tomography (OCT) image of atherosclerosis. Between 6 and 8 o'clock it is possible to observe a fibrocalcific atherosclerotic plaque.

Endoscopic optical coherence tomography, also intravascular optical coherence tomography is a catheter-based imaging application of optical coherence tomography (OCT). [1] It is capable of acquiring high-resolution images from inside a blood vessel using optical fibers and laser technology.

Contents

One of its main applications is for coronary arteries, which are often treated by endoscopic, minimally invasive surgical procedures. [2] Other applications for peripheral arteries and for neurovascular procedures have been proposed and are being investigated. Neurovascular applications required significant technological developments, due to the highly tortuous anatomy of the cerebrovasculature.

Intravascular OCT rapidly creates three-dimensional images at a resolution of approximately 15 micrometers, an improved resolution with respect to intravascular ultrasound and coronary angiogram, the other imaging techniques. [3] This offers additional information that can be used to optimize the treatment and management of vascular disease.

Theory

OCT is analogous to medical ultrasound, measuring the backreflection of infrared light rather than sound. The time for light to be reflected back from the tissue under inspection is used to measure distances. However, due to the high speed of light, the backreflection time cannot be measured directly, but is instead measured using interferometry. [4]

OCT is measured using either time domain (TD-OCT) or frequency domain techniques (FD-OCT). Commercially available coronary OCT technology is based on frequency domain techniques, resulting in rapid acquisition procedures (1 to 2 seconds). Intracoronary OCT uses near-infrared light at 1300 nm and can visualize the microstructure of the arterial wall, its size, and therapeutic devices with high accuracy.

History

Intravascular OCT was developed for the imaging of arterial disease at a resolution higher than the other techniques available, such as x-ray angiography and intravascular ultrasounds. OCT allows to assess atherosclerotic plaques characteristics at a resolution of approximately 15 μm (or better) and found applications for the guidance of catheter-based coronary interventions (ie, percutaneous coronary interventions). The first report of endoscopic OCT appeared in 1997 in the journal Science exploring various applications including gastroenterology and airways. [5] The first intravascular in vivo use in a preclinical model was reported in 1994 [6] and first in human, clinical imaging in 2003. [7] The first OCT imaging catheter and system was commercialized by LightLab Imaging, Inc., a company based in Massachusetts formed following a technology transfer in 1997 from Fujimoto's lab (MIT). [8]

Early on, time-domain OCT technology required slow acquisitions (>10 seconds long) requiring the use of balloon occlusion techniques to displace the blood from the arterial lumen, opaque to near-infrared light. This prevented a broader adoption for several years. Aroun 2008-2009, the advent of rapid sweep source lasers allowed for the development of intravascular Fourier-Domain OCT (FD-OCT). [9] [10] This enabled for the first-time rapid acquisitions of a long coronary segment in a couple of seconds, allowing non occlusive brief contrast injections to clear the arterial lumen from blood. Initial demonstration of FD-OCT for coronary imaging was achieved in 2008-2009 [11] [3] which significantly accelerated clinical adoption starting in 2009.

Cardiovascular applications

Following regulatory clearances in the major geographies between 2009 and 2012 of fast acquisition Fourier domain OCT, the use of intracoronary OCT rapidly increased. It is used to help coronary disease diagnosis, planning of the intervention, assess procedural results, and prevent complications.

In the last decade, clinical benefits of coronary OCT have been systematically investigated. Several studies have linked the use of intravascular imaging such as IVUS and OCT to better stent expansion, a metric strongly correlated to better clinical outcomes in patients suffering from coronary artery disease and myocardial infarction. [12] [13] [14]

Larger randomized clinical trials have been undertaken. In 2023, a double-blind prospective trial demonstrated improvement in morbidity and mortality in coronary bifurcation interventions: "Among patients with complex coronary-artery bifurcation lesions, OCT-guided PCI was associated with a lower incidence of MACE at 2 years than angiography-guided PCI." [15] Although not every study showed significant results, [16] to date, several studies demonstrated the benefits in patient outcomes of using intravascular imaging during coronary arteries interventions. [17] [18] The use of intravascular imaging for coronary intervention is reported on the current cardiology guidelines.

Data published in late 2016 showed that over 150,000 intracoronary optical coherence tomography procedures are performed every year, and its adoption is rapidly growing at a rate of ~10-20% every year. [19]

Assessment of artery lumen morphology is the cornerstone of intravascular imaging criteria to evaluate disease severity and guide intervention. The high-resolution of OCT imaging allows to assess with high accuracy vessel lumen area, wall microstructure, intracoronary stent apposition and expansion. [20] [21] OCT has an improved ability with respect to intravascular ultrasound to penetrate and delineate calcium in the vessel wall that makes it well suited to guide complex interventional strategies in vessels with superficial calcification. OCT has the capability of visualize coronary plaque erosion and fibrotic caps overlying lipid plaques. [22]

Neurovascular applications

In the last decade, significant advances have been made in the endovascular treatment of stroke, including brain aneurysms, intracranial atherosclerosis and ischemic stroke. [23] Intravascular OCT has been proposed has a key technology that can improve current procedure and treatments. [24] However, current intracoronary OCT catheters are not designed for navigation and reliable imaging of tortuous cerebrovascular arteries. [25]

Recently, different (wire-like) OCT catheters have been proposed and were specifically designed for the human cerebrovasculature, [26] named neuro optical coherence tomography (nOCT). A first clinical study to investigate safety, feasibility, and clinical potential has been conducted. [27] Initial applications for the treatment of brain aneurysms and intracranial atherosclerosis have been demonstrated [28] [29] [30] showing future potential. [31] [32]

Technology

The most critical technological advance was the catheter and the development of fast wavelength sweeping near-infrared lasers. The fiber optic catheter/endoscope required rapid alignment of two optical fibers with 8 μm cores (one rotating) across free space. The distal end has a focusing component (GRIN or ball lens, typically).

State-of-the-art intracoronary optical coherence tomography uses a swept-source laser to make OCT images at high-speed (i.e., approximately 80,000 kHz - A-scan lines per second) to complete acquisition of a 3D OCT volume of coronary segments in a few-seconds. [33] The first intravascular FD-OCT was introduced to the market in 2009 (EU and Asia) and in 2012 (US). In 2018, two intracoronary OCT catheters are clinically available for use in the coronary arteries, having a size in diameter between 2.4F and 2.7F. [ citation needed ]

The axial resolution of state-of-the-art commercial systems is less than 20 micrometers, which is decoupled from the catheter lateral resolution. The highest resolution of OCT allows for the in vivo imaging of vessel microstructural features at an unprecedented level, enabling visualization of vessel wall atherosclerosis, pathology, and interaction with therapeutic devices at a microscopic level. [34]

Recent developments included the combination of OCT with spectroscopy and fluorescence in a single imaging catheter [35] [36] and miniaturization of the imaging catheter. [37]

Safety

Safety of intravascular imaging, including intracoronary OCT and intravascular ultrasound, has been investigated by several studies. Recent clinical trials reported a very low rate of self-limiting, minor complications on over 3,000 patients where in all cases no harm or prolongation of hospital stay was observed. Intracoronary optical coherence tomography was demonstrated to be safe among heterogeneous groups of patients presenting varying clinical setting. [38]

See also

Related Research Articles

<span class="mw-page-title-main">Angiography</span> Medical imaging technique

Angiography or arteriography is a medical imaging technique used to visualize the inside, or lumen, of blood vessels and organs of the body, with particular interest in the arteries, veins, and the heart chambers. Modern angiography is performed by injecting a radio-opaque contrast agent into the blood vessel and imaging using X-ray based techniques such as fluoroscopy. With time-of-flight (TOF) magnetic ressonance it is no longer necessary to use a contrast.

<span class="mw-page-title-main">Optical coherence tomography</span> Imaging technique

Optical coherence tomography (OCT) is an imaging technique that uses interferometry with short-coherence-length light to obtain micrometer-level depth resolution and uses transverse scanning of the light beam to form two- and three-dimensional images from light reflected from within biological tissue or other scattering media. Short-coherence-length light can be obtained using a superluminescent diode (SLD) with a broad spectral bandwidth or a broadly tunable laser with narrow linewidth. The first demonstration of OCT imaging was published by a team from MIT and Harvard Medical School in a 1991 article in the journal Science. The article introduced the term "OCT" to credit its derivation from optical coherence-domain reflectometry, in which the axial resolution is based on temporal coherence. The first demonstrations of in vivo OCT imaging quickly followed.

<span class="mw-page-title-main">Restenosis</span> Recurrence of stenosis, a narrowing of a blood vessel

Restenosis is the recurrence of stenosis, a narrowing of a blood vessel, leading to restricted blood flow. Restenosis usually pertains to an artery or other large blood vessel that has become narrowed, received treatment to clear the blockage, and subsequently become re-narrowed. This is usually restenosis of an artery, or other blood vessel, or possibly a vessel within an organ.

<span class="mw-page-title-main">Atheroma</span> Accumulation of degenerative material in the inner layer of artery walls

An atheroma, or atheromatous plaque, is an abnormal accumulation of material in the inner layer of an arterial wall.

Intravascular ultrasound (IVUS) or intravascular echocardiography is a medical imaging methodology using a specially designed catheter with a miniaturized ultrasound probe attached to the distal end of the catheter. The proximal end of the catheter is attached to computerized ultrasound equipment. It allows the application of ultrasound technology, such as piezoelectric transducer or CMUT, to see from inside blood vessels out through the surrounding blood column, visualizing the endothelium of blood vessels.

<span class="mw-page-title-main">Percutaneous coronary intervention</span> Medical techniques used to manage coronary occlusion

Percutaneous coronary intervention (PCI) is a minimally invasive non-surgical procedure used to treat narrowing of the coronary arteries of the heart found in coronary artery disease. The procedure is used to place and deploy coronary stents, a permanent wire-meshed tube, to open narrowed coronary arteries. PCI is considered 'non-surgical' as it uses a small hole in a peripheral artery (leg/arm) to gain access to the arterial system; an equivalent surgical procedure would involve the opening of the chest wall to gain access to the heart area. The term 'coronary angioplasty with stent' is synonymous with PCI. The procedure visualises the blood vessels via fluoroscopic imaging and contrast dyes. PCI is performed by an interventional cardiologists in a catheterization laboratory setting.

<span class="mw-page-title-main">Drug-eluting stent</span> Medical implant

A drug-eluting stent (DES) is a tube made of a mesh-like material used to treat narrowed arteries in medical procedures both mechanically and pharmacologically. A DES is inserted into a narrowed artery using a delivery catheter usually inserted through a larger artery in the groin or wrist. The stent assembly has the DES mechanism attached towards the front of the stent, and usually is composed of the collapsed stent over a collapsed polymeric balloon mechanism, the balloon mechanism is inflated and used to expand the meshed stent once in position. The stent expands, embedding into the occluded artery wall, keeping the artery open, thereby improving blood flow. The mesh design allows for stent expansion and also for new healthy vessel endothelial cells to grow through and around it, securing it in place.

The history of invasive and interventional cardiology is complex, with multiple groups working independently on similar technologies. Invasive and interventional cardiology is currently closely associated with cardiologists, though the development and most of its early research and procedures were performed by diagnostic and interventional radiologists.

Fractional flow reserve (FFR) is a diagnostic technique used in coronary catheterization. FFR measures pressure differences across a coronary artery stenosis to determine the likelihood that the stenosis impedes oxygen delivery to the heart muscle.

<span class="mw-page-title-main">Intima–media thickness</span>

Intima–media thickness (IMT), also called intimal medial thickness, is a measurement of the thickness of tunica intima and tunica media, the innermost two layers of the wall of an artery. The measurement is usually made by external ultrasound and occasionally by internal, invasive ultrasound catheters. Measurements of the total wall thickness of blood vessels can also be done using other imaging modalities.

<span class="mw-page-title-main">Coronary stent</span> Medical stent implanted into coronary arteries

A coronary stent is a tube-shaped device placed in the coronary arteries that supply blood to the heart, to keep the arteries open in patients suffering from coronary heart disease. The vast majority of stents used in modern interventional cardiology are drug-eluting stents (DES). They are used in a medical procedure called percutaneous coronary intervention (PCI). Coronary stents are divided into two broad types: drug-eluting and bare metal stents. As of 2023, drug-eluting stents were used in more than 90% of all PCI procedures. Stents reduce angina and have been shown to improve survival and decrease adverse events after a patient has suffered a heart attack—medically termed an acute myocardial infarction.

<span class="mw-page-title-main">Coronary artery aneurysm</span> Medical condition

Coronary artery aneurysm is an abnormal dilatation of part of the coronary artery. This rare disorder occurs in about 0.3–4.9% of patients who undergo coronary angiography.

<span class="mw-page-title-main">Spontaneous coronary artery dissection</span> Uncommon cause of heart attacks mostly affecting younger, healthy women

Spontaneous coronary artery dissection (SCAD) is an uncommon but potentially lethal condition in which one of the coronary arteries that supply the heart, spontaneously develops a blood collection, or hematoma, within the artery wall due to a tear in the wall. SCAD is one of the arterial dissections that can occur.

Coronary flow reserve (CFR) is the maximum increase in blood flow through the coronary arteries above the normal resting volume. Its measurement is often used in medicine to assist in the treatment of conditions affecting the coronary arteries and to determine the efficacy of treatments used.

<span class="mw-page-title-main">Coronary CT angiography</span> Use of computed tomography angiography to assess the coronary arteries of the heart

Coronary CT angiography is the use of computed tomography (CT) angiography to assess the coronary arteries of the heart. The patient receives an intravenous injection of radiocontrast and then the heart is scanned using a high speed CT scanner, allowing physicians to assess the extent of occlusion in the coronary arteries, usually in order to diagnose coronary artery disease.

Cardiac imaging refers to minimally invasive imaging of the heart using ultrasound, magnetic resonance imaging (MRI), computed tomography (CT), or nuclear medicine (NM) imaging with PET or SPECT. These cardiac techniques are otherwise referred to as echocardiography, Cardiac MRI, Cardiac CT, Cardiac PET and Cardiac SPECT including myocardial perfusion imaging.

Giovanni J. Ughi, engineer and scientist, is one of the inventors of multimodality optical coherence tomography (OCT) and Laser-induced fluorescence molecular imaging, pioneering a first-in-man study of coronary arteries during his work at Massachusetts General Hospital and Harvard Medical School. The results of his work, combining two imaging technologies, may better identify dangerous coronary plaques, responsible for coronary artery disease and myocardial infarction.

Intravascular imaging is a catheter based system that allows physicians such as interventional cardiologists to acquire images of diseased vessels from inside the artery. Intravascular imaging provides detailed and accurate measurements of vessel lumen morphology, vessel size, extension of diseased artery segments, vessel size and plaque characteristics. Examples of intravascular imaging modalities are intravascular ultrasound (IVUS) and intracoronary optical coherence tomography.

<span class="mw-page-title-main">Intravascular fluorescence</span>

Intravascular fluorescence is a catheter-based molecular imaging technique that uses near-infrared fluorescence to detect artery wall autofluorescence (NIRAF) or fluorescence generated by molecular agents injected intravenously (NIRF). No commercial systems based on intravascular fluorescence are currently on the market, however, significant steps forwards in intravascular fluorescence imaging technology have been made between 2010-2016. It is typically used to detect functional state of artery wall including some known high-risk features of atherosclerosis. It is usually combined with structural imaging modalities such as Intravascular ultrasound and/or Intracoronary optical coherence tomography, to provide functional information in a morphological context.

Optical coherence elastography (OCE) is an emerging imaging technique used in biomedical imaging to form pictures of biological tissue in micron and submicron level and maps the biomechanical property of tissue.

References

  1. Gora MJ, Suter MJ, Tearney GJ, Li X (May 2017). "Endoscopic optical coherence tomography: technologies and clinical applications [Invited]". Biomedical Optics Express. 8 (5): 2405–2444. doi:10.1364/BOE.8.002405. PMC   5480489 . PMID   28663882.
  2. Kumar A, Yadav N, Singh S, Chauhan N (July 2016). "Minimally invasive (endoscopic-computer assisted) surgery: Technique and review". Annals of Maxillofacial Surgery. 6 (2): 159–164. doi: 10.4103/2231-0746.200348 . PMC   5343621 . PMID   28299251.
  3. 1 2 Bezerra HG, Costa MA, Guagliumi G, Rollins AM, Simon DI (November 2009). "Intracoronary optical coherence tomography: a comprehensive review clinical and research applications". JACC. Cardiovascular Interventions. 2 (11): 1035–1046. doi:10.1016/j.jcin.2009.06.019. PMC   4113036 . PMID   19926041.
  4. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. (November 1991). "Optical coherence tomography". Science. 254 (5035): 1178–1181. Bibcode:1991Sci...254.1178H. doi:10.1126/science.1957169. PMC   4638169 . PMID   1957169.
  5. Tearney GJ, Brezinski ME, Bouma BE, Boppart SA, Pitris C, Southern JF, et al. (June 1997). "In vivo endoscopic optical biopsy with optical coherence tomography". Science. 276 (5321): 2037–2039. doi:10.1126/science.276.5321.2037. PMID   9197265.
  6. Fujimoto JG, Boppart SA, Tearney GJ, Bouma BE, Pitris C, Brezinski ME (August 1999). "High resolution in vivo intra-arterial imaging with optical coherence tomography". Heart. 82 (2): 128–133. doi:10.1136/hrt.82.2.128. PMC   1729132 . PMID   10409522.
  7. Bouma BE, Tearney GJ, Yabushita H, Shishkov M, Kauffman CR, DeJoseph Gauthier D, et al. (March 2003). "Evaluation of intracoronary stenting by intravascular optical coherence tomography". Heart. 89 (3): 317–320. doi:10.1136/heart.89.3.317. PMC   1767586 . PMID   12591841.
  8. "Biomedical Optical Imaging and Biophotonics Group". www.rle.mit.edu. Retrieved 2024-05-22.
  9. de Boer JF, Cense B, Park BH, Pierce MC, Tearney GJ, Bouma BE (November 2003). "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography". Optics Letters. 28 (21): 2067–2069. Bibcode:2003OptL...28.2067D. doi:10.1364/OL.28.002067. PMID   14587817.
  10. Adler DC, Chen Y, Huber R, Schmitt J, Connolly J, Fujimoto JG (December 2007). "Three-dimensional endomicroscopy using optical coherence tomography". Nature Photonics. 1 (12): 709–716. Bibcode:2007NaPho...1..709A. doi:10.1038/nphoton.2007.228. ISSN   1749-4885.
  11. Tearney GJ, Waxman S, Shishkov M, Vakoc BJ, Suter MJ, Freilich MI, et al. (November 2008). "Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging". JACC. Cardiovascular Imaging. 1 (6): 752–761. doi:10.1016/j.jcmg.2008.06.007. PMC   2852244 . PMID   19356512.
  12. Wijns W, Shite J, Jones MR, Lee SW, Price MJ, Fabbiocchi F, et al. (December 2015). "Optical coherence tomography imaging during percutaneous coronary intervention impacts physician decision-making: ILUMIEN I study". European Heart Journal. 36 (47): 3346–3355. doi:10.1093/eurheartj/ehv367. PMC   4677272 . PMID   26242713.
  13. Habara M, Nasu K, Terashima M, Kaneda H, Yokota D, Ko E, et al. (April 2012). "Impact of frequency-domain optical coherence tomography guidance for optimal coronary stent implantation in comparison with intravascular ultrasound guidance". Circulation: Cardiovascular Interventions. 5 (2): 193–201. doi: 10.1161/CIRCINTERVENTIONS.111.965111 . PMID   22456026. S2CID   3025748.
  14. Vergallo R, Porto I, D'Amario D, Annibali G, Galli M, Benenati S, et al. (April 2019). "Coronary Atherosclerotic Phenotype and Plaque Healing in Patients With Recurrent Acute Coronary Syndromes Compared With Patients With Long-term Clinical Stability: An In Vivo Optical Coherence Tomography Study". JAMA Cardiology. 4 (4): 321–329. doi:10.1001/jamacardio.2019.0275. PMC   6484796 . PMID   30865212.
  15. Holm NR, Andreasen LN, Neghabat O, Laanmets P, Kumsars I, Bennett J, et al. (October 2023). "OCT or Angiography Guidance for PCI in Complex Bifurcation Lesions". The New England Journal of Medicine. 389 (16): 1477–1487. doi:10.1056/NEJMoa2307770. PMID   37634149. S2CID   261231045.
  16. Ali ZA, Landmesser U, Maehara A, Matsumura M, Shlofmitz RA, Guagliumi G, et al. (October 2023). "Optical Coherence Tomography-Guided versus Angiography-Guided PCI". The New England Journal of Medicine. 389 (16): 1466–1476. doi:10.1056/NEJMoa2305861. PMID   37634188.
  17. Kang DY, Ahn JM, Yun SC, Hur SH, Cho YK, Lee CH, et al. (October 2023). "Optical Coherence Tomography-Guided or Intravascular Ultrasound-Guided Percutaneous Coronary Intervention: The OCTIVUS Randomized Clinical Trial". Circulation. 148 (16): 1195–1206. doi:10.1161/CIRCULATIONAHA.123.066429. PMID   37634092.
  18. Stone GW, Christiansen EH, Ali ZA, Andreasen LN, Maehara A, Ahmad Y, et al. (March 2024). "Intravascular imaging-guided coronary drug-eluting stent implantation: an updated network meta-analysis". Lancet. 403 (10429): 824–837. doi:10.1016/S0140-6736(23)02454-6. PMID   38401549.
  19. Swanson EA, Fujimoto JG (March 2017). "The ecosystem that powered the translation of OCT from fundamental research to clinical and commercial impact [Invited]". Biomedical Optics Express. 8 (3): 1638–1664. doi:10.1364/BOE.8.001638. PMC   5480569 . PMID   28663854.
  20. Ughi GJ, Adriaenssens T, Onsea K, Kayaert P, Dubois C, Sinnaeve P, et al. (February 2012). "Automatic segmentation of in-vivo intra-coronary optical coherence tomography images to assess stent strut apposition and coverage". The International Journal of Cardiovascular Imaging. 28 (2): 229–241. doi:10.1007/s10554-011-9824-3. PMID   21347593.
  21. Yabushita H, Bouma BE, Houser SL, Aretz HT, Jang IK, Schlendorf KH, et al. (September 2002). "Characterization of human atherosclerosis by optical coherence tomography". Circulation. 106 (13): 1640–1645. doi:10.1161/01.CIR.0000029927.92825.F6. PMID   12270856.
  22. Kini AS, Vengrenyuk Y, Yoshimura T, Matsumura M, Pena J, Baber U, et al. (February 2017). "Fibrous Cap Thickness by Optical Coherence Tomography In Vivo". Journal of the American College of Cardiology. 69 (6): 644–657. doi:10.1016/j.jacc.2016.10.028. PMID   27989887.
  23. Nogueira RG, Ribó M (September 2019). "Endovascular Treatment of Acute Stroke". Stroke. 50 (9): 2612–2618. doi:10.1161/STROKEAHA.119.023811. PMID   31340728.
  24. Chen CJ, Kumar JS, Chen SH, Ding D, Buell TJ, Sur S, et al. (April 2018). "Optical Coherence Tomography: Future Applications in Cerebrovascular Imaging". Stroke. 49 (4): 1044–1050. doi:10.1161/STROKEAHA.117.019818. PMID   29491139.
  25. Gounis MJ, Ughi GJ, Marosfoi M, Lopes DK, Fiorella D, Bezerra HG, et al. (January 2019). "Intravascular Optical Coherence Tomography for Neurointerventional Surgery". Stroke. 50 (1): 218–223. doi:10.1161/STROKEAHA.118.022315. PMC   6541539 . PMID   30580737.
  26. Ughi GJ, Marosfoi MG, King RM, Caroff J, Peterson LM, Duncan BH, et al. (July 2020). "A neurovascular high-frequency optical coherence tomography system enables in situ cerebrovascular volumetric microscopy". Nature Communications. 11 (1): 3851. Bibcode:2020NatCo..11.3851U. doi:10.1038/s41467-020-17702-7. PMC   7395105 . PMID   32737314.
  27. Pereira VM, Lylyk P, Cancelliere N, Lylyk PN, Lylyk I, Anagnostakou V, et al. (May 2024). "Volumetric microscopy of cerebral arteries with a miniaturized optical coherence tomography imaging probe". Science Translational Medicine. 16 (747): eadl4497. doi:10.1126/scitranslmed.adl4497. PMID   38748771.
  28. King RM, Peker A, Anagnostakou V, Raskett CM, Arends JM, Dixit HG, et al. (September 2023). "High-frequency optical coherence tomography predictors of aneurysm occlusion following flow diverter treatment in a preclinical model". Journal of NeuroInterventional Surgery. 15 (9): 919–923. doi:10.1136/jnis-2022-019275. PMID   36002288.
  29. Anagnostakou V, Epshtein M, Ughi GJ, King RM, Valavanis A, Puri AS, et al. (May 2022). "Transvascular in vivo microscopy of the subarachnoid space". Journal of NeuroInterventional Surgery. 14 (5): 420–428. doi:10.1136/neurintsurg-2021-018544. PMID   35115394.
  30. Caroff J, King RM, Ughi GJ, Marosfoi M, Langan ET, Raskett C, et al. (November 2020). "Longitudinal Monitoring of Flow-Diverting Stent Tissue Coverage After Implant in a Bifurcation Model Using Neurovascular High-Frequency Optical Coherence Tomography". Neurosurgery. 87 (6): 1311–1319. doi:10.1093/neuros/nyaa208. PMC   7666887 . PMID   32463884.
  31. Siddiqui AH, Andersson T (2024-09-26). "Shining light on neurovascular disease". Interventional Neuroradiology: 15910199241285962. doi:10.1177/15910199241285962. ISSN   1591-0199. PMC   11559757 . PMID   39324217.
  32. Cooney E (2024-05-15). "To detect risk of stroke, tiny probe acts 'like a microscope' inside brain's blood vessels". STAT. Retrieved 2024-05-17.
  33. Yun SH, Tearney G, de Boer J, Bouma B (November 2004). "Pulsed-source and swept-source spectral-domain optical coherence tomography with reduced motion artifacts". Optics Express. 12 (23): 5614–5624. Bibcode:2004OExpr..12.5614Y. doi:10.1364/opex.12.005614. PMC   2713045 . PMID   19488195.
  34. Tearney GJ, Regar E, Akasaka T, Adriaenssens T, Barlis P, Bezerra HG, et al. (March 2012). "Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation". Journal of the American College of Cardiology. 59 (12): 1058–1072. doi:10.1016/j.jacc.2011.09.079. PMID   22421299.
  35. Fard AM, Vacas-Jacques P, Hamidi E, Wang H, Carruth RW, Gardecki JA, et al. (December 2013). "Optical coherence tomography--near infrared spectroscopy system and catheter for intravascular imaging". Optics Express. 21 (25): 30849–30858. Bibcode:2013OExpr..2130849F. doi:10.1364/OE.21.030849. PMC   3926541 . PMID   24514658.
  36. Ughi GJ, Wang H, Gerbaud E, Gardecki JA, Fard AM, Hamidi E, et al. (November 2016). "Clinical Characterization of Coronary Atherosclerosis With Dual-Modality OCT and Near-Infrared Autofluorescence Imaging". JACC. Cardiovascular Imaging. 9 (11): 1304–1314. doi:10.1016/j.jcmg.2015.11.020. PMC   5010789 . PMID   26971006.
  37. Bezerra HG, Quimby DL, Matar F, Mohanty BD, Bassily E, Ughi GJ (July 2023). "High-Frequency Optical Coherence Tomography (HF-OCT) for Preintervention Coronary Imaging: A First-in-Human Study". JACC. Cardiovascular Imaging. 16 (7): 982–984. doi:10.1016/j.jcmg.2023.01.013. PMID   37407126.
  38. van der Sijde JN, Karanasos A, van Ditzhuijzen NS, Okamura T, van Geuns RJ, Valgimigli M, et al. (April 2017). "Safety of optical coherence tomography in daily practice: a comparison with intravascular ultrasound". European Heart Journal - Cardiovascular Imaging. 18 (4): 467–474. doi: 10.1093/ehjci/jew037 . PMID   26992420.