Endothelin 3

Last updated
EDN3
Identifiers
Aliases EDN3 , ET-3, ET3, HSCR4, PPET3, WS4B, endothelin 3
External IDs OMIM: 131242 MGI: 95285 HomoloGene: 88 GeneCards: EDN3
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_007903

RefSeq (protein)

NP_001289384
NP_001289385
NP_996915
NP_996916
NP_996917

NP_031929

Location (UCSC) Chr 20: 59.3 – 59.33 Mb Chr 2: 174.6 – 174.63 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Endothelin-3 is a protein that in humans is encoded by the EDN3 gene. [5]

The protein encoded by this gene is a member of the endothelin family. Endothelins are endothelium-derived vasoactive peptides involved in a variety of biological functions. The active form of this protein is a 21 amino acid peptide processed from the precursor protein. The active peptide is a ligand for endothelin receptor type B (EDNRB). The interaction of this endothelin with EDNRB is essential for development of neural crest-derived cell lineages, such as melanocytes and enteric neurons. Mutations in this gene and EDNRB have been associated with Hirschsprung disease (HSCR) and Waardenburg syndrome (WS), which are congenital disorders involving neural crest-derived cells. Four alternatively spliced transcript variants encoding three distinct isoforms have been observed. [5]

Related Research Articles

<span class="mw-page-title-main">Waardenburg syndrome</span> Genetic condition involving hearing loss and depigmentation

Waardenburg syndrome is a group of rare genetic conditions characterised by at least some degree of congenital hearing loss and pigmentation deficiencies, which can include bright blue eyes, a white forelock or patches of light skin. These basic features constitute type 2 of the condition; in type 1, there is also a wider gap between the inner corners of the eyes called telecanthus, or dystopia canthorum. In type 3, which is rare, the arms and hands are also malformed, with permanent finger contractures or fused fingers, while in type 4, the person also has Hirschsprung's disease. There also exist at least two types that can result in central nervous system (CNS) symptoms such as developmental delay and muscle tone abnormalities.

<span class="mw-page-title-main">Lethal white syndrome</span> Medical condition

Lethal white syndrome (LWS), also called overo lethal white syndrome (OLWS), lethal white overo (LWO), and overo lethal white foal syndrome (OLWFS), is an autosomal genetic disorder most prevalent in the American Paint Horse. Affected foals are born after the full 11-month gestation and externally appear normal, though they have all-white or nearly all-white coats and blue eyes. However, internally, these foals have a nonfunctioning colon. Within a few hours, signs of colic appear; affected foals die within a few days. Because the death is often painful, such foals are often humanely euthanized once identified. The disease is particularly devastating because foals are born seemingly healthy after being carried to full term.

Albinism-black lock-cell migration disorder is the initialism for the following terms and concepts that describe a condition affecting a person's physical appearance and physiology: (1) A – albinism, (2) B – black lock of hair, (3) C – cell migration disorder of the neurocytes of the gut, and (4) D – sensorineural deafness. The syndrome is caused by mutation in the endothelin B receptor gene (EDNRB).

<span class="mw-page-title-main">Corticosteroid 11-beta-dehydrogenase isozyme 2</span> Enzyme found in humans

Corticosteroid 11-β-dehydrogenase isozyme 2 also known as 11-β-hydroxysteroid dehydrogenase 2 is an enzyme that in humans is encoded by the HSD11B2 gene.

<span class="mw-page-title-main">Agouti-signaling protein</span> Protein-coding gene in the species Homo sapiens

Agouti-signaling protein is a protein that in humans is encoded by the ASIP gene. It is responsible for the distribution of melanin pigment in mammals. Agouti interacts with the melanocortin 1 receptor to determine whether the melanocyte produces phaeomelanin, or eumelanin. This interaction is responsible for making distinct light and dark bands in the hairs of animals such as the agouti, which the gene is named after. In other species such as horses, agouti signalling is responsible for determining which parts of the body will be red or black. Mice with wildtype agouti will be grey-brown, with each hair being partly yellow and partly black. Loss of function mutations in mice and other species cause black fur coloration, while mutations causing expression throughout the whole body in mice cause yellow fur and obesity.

There are at least four known endothelin receptors, ETA, ETB1, ETB2 and ETC, all of which are G protein-coupled receptors whose activation result in elevation of intracellular-free calcium, which constricts the smooth muscles of the blood vessels, raising blood pressure, or relaxes the smooth muscles of the blood vessels, lowering blood pressure, among other functions.

<span class="mw-page-title-main">Microphthalmia-associated transcription factor</span> Mammalian protein found in Homo sapiens

Microphthalmia-associated transcription factor also known as class E basic helix-loop-helix protein 32 or bHLHe32 is a protein that in humans is encoded by the MITF gene.

<span class="mw-page-title-main">Neurotrophin-4</span> Protein-coding gene in the species Homo sapiens

Neurotrophin-4 (NT-4), also known as neurotrophin-5 (NT-5), is a protein that in humans is encoded by the NTF4 gene. It is a neurotrophic factor that signals predominantly through the TrkB receptor tyrosine kinase.

<span class="mw-page-title-main">Melanophilin</span> Protein-coding gene in the species Homo sapiens

Melanophilin is a carrier protein which in humans is encoded by the MLPH gene. Several alternatively spliced transcript variants of this gene have been described, but the full-length nature of some of these variants has not been determined.

<span class="mw-page-title-main">Ephrin B1</span> Protein-coding gene in the species Homo sapiens

Ephrin B1 is a protein that in humans is encoded by the EFNB1 gene. It is a member of the ephrin family. The encoded protein is a type I membrane protein and a ligand of Eph-related receptor tyrosine kinases. It may play a role in cell adhesion and function in the development or maintenance of the nervous system.

<span class="mw-page-title-main">Endothelin receptor type B</span> Protein-coding gene in the species Homo sapiens

Endothelin receptor type B, (ET-B) is a protein that in humans is encoded by the EDNRB gene.

<span class="mw-page-title-main">Melanocortin 3 receptor</span> Mammalian protein found in Homo sapiens

Melanocortin 3 receptor (MC3R) is a protein that in humans is encoded by the MC3R gene.

<span class="mw-page-title-main">PTCH1</span> Protein-coding gene in the species Homo sapiens

Protein patched homolog 1 is a protein that is the member of the patched family and in humans is encoded by the PTCH1 gene.

<span class="mw-page-title-main">Endothelin converting enzyme 1</span> Mammalian protein found in Homo sapiens

Endothelin converting enzyme 1, also known as ECE1, is an enzyme which in humans is encoded by the ECE1 gene.

<span class="mw-page-title-main">SOX10</span> Transcription factor gene of the SOX family

Transcription factor SOX-10 is a protein that in humans is encoded by the SOX10 gene.

<span class="mw-page-title-main">Collagen, type XI, alpha 1</span> Protein found in humans

Collagen alpha-1(XI) chain is a protein that in humans is encoded by the COL11A1 gene.

<span class="mw-page-title-main">CRLF1</span> Protein-coding gene in the species Homo sapiens

Cytokine receptor-like factor 1 is a protein that in humans is encoded by the CRLF1 gene.

<span class="mw-page-title-main">NPHP3</span> Protein-coding gene in the species Homo sapiens

Nephrocystin-3 is a protein that in humans is encoded by the NPHP3 gene.

<span class="mw-page-title-main">Endothelin 2</span> Protein-coding gene in the species Homo sapiens

Endothelin 2 (ET-2) is a protein encoded by the EDN2 gene in humans. It was first discovered in 1988 by Yanagisawa and team and belongs to a family of three endothelin peptide isoforms, which constrict blood vessels. ET-2 is encoded by genes on separate chromosomes to its isoforms and is mainly produced in vascular endothelial cells of the kidney, placenta, uterus, heart, central nervous system and intestine. It becomes present in the blood of animals and humans at levels ranging from 0.3pg/ml to 3pg/ml. ET-2 acts by binding to two different G-protein coupled receptors (GPCRs), the endothelin A receptor (EDNRA) and the endothelin B receptor (EDNRB).

Waardenburg Syndrome Type 4A is an extremely rare congenital disorder caused by a mutation in an endothelin receptor gene. It results in common Waardenburg syndrome symptoms such as abnormal hair and skin pigmentation and heterochromia, but also present with symptoms of Hirschsprung’s disease. Symptoms include abdominal pain and bowel obstruction. Waardenburg Syndrome Type 4A is the rarest among the types, appearing only once in about every 1,000,000 individuals. There have only been a total of 50 cases reported in total as of 2016.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000124205 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000027524 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 "Entrez Gene: EDN3 endothelin 3".

Further reading