Energy tower (downdraft)

Last updated
Sharav Sluice Energy Tower Sharav.gif
Sharav Sluice Energy Tower

The energy tower is a device for producing electrical power. The brainchild of Dr. Phillip Carlson, expanded by Professor Dan Zaslavsky from the Technion. Energy towers spray water on hot air at the top of the tower, making the cooled air fall through the tower and drive a turbine at the tower's bottom.

Contents

Concept

An energy tower (also known as a downdraft energy tower, because the air flows down the tower) is a tall (1,000 meters) and wide (400 meters) hollow cylinder with a water spray system at the top. Pumps lift the water to the top of the tower and then spray the water inside the tower. Evaporation of water cools the hot, dry air hovering at the top. The cooled air, now denser than the outside warmer air, falls through the cylinder, spinning a turbine at the bottom. The turbine drives a generator which produces the electricity.

The greater the temperature difference between the air and water, the greater the energy efficiency. Therefore, downdraft energy towers should work best in a hot dry climate. Energy towers require large quantities of water. Salt water is acceptable, although care must be taken to prevent corrosion; desalination can help solve this problem.

The energy that is extracted from the air is ultimately derived from the sun, so this can be considered a form of solar power. Energy production continues at night, because air retains some of the day's heat after dark. However, power generation by the energy tower is affected by the weather: it slows down each time the ambient humidity increases (such as during a rainstorm), or the temperature falls.

A related approach is the solar updraft tower, which heats air in glass enclosures at ground level and sends the heated air up a tower driving turbines at the base. Updraft towers do not pump water, which increases their efficiency, but do require large amounts of land for the collectors. Land acquisition and collector construction costs for updraft towers must be compared to pumping infrastructure costs for downdraft collectors. Operationally, maintaining the collector structures for updraft towers must be compared to pumping costs and pump infrastructure maintenance.

Cost/efficiency

Zaslavsky and other authors estimate that depending on the site and financing costs, energy could be produced in the range of 1-4 cents per kWh, well below alternative energy sources other than hydro. Pumping the water requires about 50% of the turbine's output. Zaslavsky claims that the Energy Tower would achieve up to 70-80% of the Carnot limit. If the conversion efficiency turns out to be much lower, it is expected to have an adverse impact on projections made for cost of energy.

Projections made by Altmann and by Czisch about conversion efficiency and about cost of energy (cents/kWh) are based only on model calculations , no data on a working pilot plant have ever been collected.

Actual measurements on the 50 kW Manzanares pilot solar updraft tower found a conversion efficiency of 0.53%, although SBP believe that this could be increased to 1.3% in a large and improved 100 MW unit. This amounts to about 10% of the theoretical limit for the Carnot cycle. It is important to note a significant difference between the up-draft and down-draft proposals. The usage of water as a working-medium dramatically increases the potential for thermal energy capture, and electrical generation, due to its specific heat capacity. While the design may have its problems (see next section) and the stated efficiency claims has yet to be demonstrated, it would be an error to extrapolate performance from one to the other simply because of similarities in the name.

Potential problems

Large industrial consumers often locate near cheap sources of electricity. However, many of these desert regions also lack necessary infrastructure, increasing capital requirements and overall risk.

Demonstration project

Maryland-based Solar Wind Energy, Inc. was developing a 685 metres (2,247 ft) tower. Under the most recent design specifications, the Tower designed for a site near San Luis, Arizona, has a gross production capacity on an hourly basis, of up to 1,250 megawatt hours. Due to lower capacities during winter days, the average hourly output per day for sale to the grid for the entire year averages approximately 435 megawatt hours/hr. [2] [3]

See also

Related Research Articles

An autonomous building is a building designed to be operated independently from infrastructural support services such as the electric power grid, gas grid, municipal water systems, sewage treatment systems, storm drains, communication services, and in some cases, public roads.

<span class="mw-page-title-main">Electricity generation</span> Process of generating electrical power

Electricity generation is the process of generating electric power from sources of primary energy. For utilities in the electric power industry, it is the stage prior to its delivery to end users or its storage.

<span class="mw-page-title-main">Solar energy</span> Radiant light and heat from the Sun, harnessed with technology

Solar energy is radiant light and heat from the Sun that is harnessed using a range of technologies such as solar power to generate electricity, solar thermal energy, and solar architecture. It is an essential source of renewable energy, and its technologies are broadly characterized as either passive solar or active solar depending on how they capture and distribute solar energy or convert it into solar power. Active solar techniques include the use of photovoltaic systems, concentrated solar power, and solar water heating to harness the energy. Passive solar techniques include orienting a building to the Sun, selecting materials with favorable thermal mass or light-dispersing properties, and designing spaces that naturally circulate air.

<span class="mw-page-title-main">Power station</span> Facility generating electric power

A power station, also referred to as a power plant and sometimes generating station or generating plant, is an industrial facility for the generation of electric power. Power stations are generally connected to an electrical grid.

<span class="mw-page-title-main">Solar updraft tower</span> Thermal convection power plant

The solar updraft tower (SUT) is a design concept for a renewable-energy power plant for generating electricity from low temperature solar heat. Sunshine heats the air beneath a very wide greenhouse-like roofed collector structure surrounding the central base of a very tall chimney tower. The resulting convection causes a hot air updraft in the tower by the chimney effect. This airflow drives wind turbines, placed in the chimney updraft or around the chimney base, to produce electricity.

<span class="mw-page-title-main">Solar thermal energy</span> Technology using sunlight for heat

Solar thermal energy (STE) is a form of energy and a technology for harnessing solar energy to generate thermal energy for use in industry, and in the residential and commercial sectors.

<span class="mw-page-title-main">Energy development</span> Methods bringing energy into production

Energy development is the field of activities focused on obtaining sources of energy from natural resources. These activities include the production of renewable, nuclear, and fossil fuel derived sources of energy, and for the recovery and reuse of energy that would otherwise be wasted. Energy conservation and efficiency measures reduce the demand for energy development, and can have benefits to society with improvements to environmental issues.

<span class="mw-page-title-main">Parabolic trough</span> Technology used in concentrated solar power stations

A parabolic trough is a type of solar thermal collector that is straight in one dimension and curved as a parabola in the other two, lined with a polished metal mirror. The sunlight which enters the mirror parallel to its plane of symmetry is focused along the focal line, where objects are positioned that are intended to be heated. In a solar cooker, for example, food is placed at the focal line of a trough, which is cooked when the trough is aimed so the Sun is in its plane of symmetry.

This is a list of solar energy topics.

<span class="mw-page-title-main">Sustainable architecture</span> Architecture designed to minimize environmental impact

Sustainable architecture is architecture that seeks to minimize the negative environmental impact of buildings through improved efficiency and moderation in the use of materials, energy, development space and the ecosystem at large. Sustainable architecture uses a conscious approach to energy and ecological conservation in the design of the built environment.

<span class="mw-page-title-main">Vortex engine</span>

The concept of a vortex engine or atmospheric vortex engine (AVE), independently proposed by Norman Louat and Louis M. Michaud, aims to replace large physical chimneys with a vortex of air created by a shorter, less-expensive structure. The AVE induces ground-level vorticity, resulting in a vortex similar to a naturally occurring landspout or waterspout.

<span class="mw-page-title-main">Microgeneration</span> Small-scale heating and electric power creation

Microgeneration is the small-scale production of heat or electric power from a "low carbon source," as an alternative or supplement to traditional centralized grid-connected power.

An atmospheric water generator (AWG), is a device that extracts water from humid ambient air, producing potable water. Water vapor in the air can be extracted either by condensation - cooling the air below its dew point, exposing the air to desiccants, using membranes that only pass water vapor, collecting fog, or pressurizing the air. AWGs are useful where potable water is difficult to obtain, because water is always present in ambient air.

Solar air conditioning, or "solar-powered air conditioning", refers to any air conditioning (cooling) system that uses solar power.

<span class="mw-page-title-main">Hybrid power</span> Combinations between different technologies to generate electric power

Hybrid power are combinations between different technologies to produce power.

Energy tower may refer to:

Energy recycling is the energy recovery process of utilizing energy that would normally be wasted, usually by converting it into electricity or thermal energy. Undertaken at manufacturing facilities, power plants, and large institutions such as hospitals and universities, it significantly increases efficiency, thereby reducing energy costs and greenhouse gas pollution simultaneously. The process is noted for its potential to mitigate global warming profitably. This work is usually done in the form of combined heat and power or waste heat recovery.

Solar energy – radiant light and heat from the sun. It has been harnessed by humans since ancient times using a range of ever-evolving technologies. Solar energy technologies include solar heating, solar photovoltaics, solar thermal electricity and solar architecture, which can make considerable contributions to solving some of the most urgent problems that the world now faces.

<span class="mw-page-title-main">Copper in renewable energy</span> The use of copper in renewable energy

Renewable energy sources such as solar, wind, tidal, hydro, biomass, and geothermal have become significant sectors of the energy market. The rapid growth of these sources in the 21st century has been prompted by increasing costs of fossil fuels as well as their environmental impact issues that significantly lowered their use.

References

  1. Pluvinergy
  2. "About the Tower" . Retrieved 15 July 2017.
  3. "Solar Wind Energy's Downdraft Tower generates its own wind all year round". 19 June 2014. Retrieved 1 April 2021.
  1. ^ "Solar Wind Energy's Downdraft Tower generates its own wind all year round". Gizmag.com. 19 June 2014. Retrieved 2014-06-19.
  2. ^ USpatent 3,894,393,Carlson; Phillip R.,"Power generation through controlled convection (aeroelectric power generation)",issued 1975-07-15 
  3. ^ Zaslavsky, Dan; Rami Guetta et al. (December 2001). "Energy Towers for Producing Electricity and Desalinated Water without a Collector" (PDF). Archived from the original (PDF) on 2006-08-29. (435 KB). Technion Israel, Israel - India Steering Committee. Retrieved on 2007-03-15.
  4. ^ Altman, Talia; Dan Zaslavsky; Rami Guetta; Gregor Czisch (May 2006). "Evaluation of the potential of electricity and desalinated water supply by using technology of "Energy Towers" for Australia, America and Africa" (PDF). Archived from the original (PDF) on 2007-09-27. Retrieved 2007-03-18.
  5. ^ Altmann, T.; Y. Carmel; R. Guetta; D. Zaslavsky; Y. Doytsher (June 2005). "Assessment of an "Energy Tower" potential in Australia using a mathematical model and GIS" (PDF). Solar Energy. Elsevier Ltd. 78 (6): 799–808. Bibcode:2005SoEn...78..799A. doi:10.1016/j.solener.2004.08.025. Archived from the original (PDF) on 2007-03-31. Retrieved 2007-03-12.
  6. ^ Czisch, Gregor (June 2005). "Evaluation of the global potential of energy towers". Archived from the original on 2007-03-11. Retrieved 2007-03-13.
  7. ^ Czisch, Gregor (September 2001). "Aeroelectric Oasis System". Global Renewable Energy Potential, Approaches to its Use. Archived from the original on 2007-03-11. Retrieved 2007-03-13.
  8. ^ Gutman, Per-Olof; Eran Horesh; Rami Guetta; Michael Borshchevsky (2003-04-29). "Control of the Aero-Electric Power Station - an exciting QFT application for the 21st century". International Journal of Robust and Nonlinear Control. John Wiley & Sons, Ltd. 13 (7): 619–636. doi:10.1002/rnc.828. S2CID   121135191.
  9. ^ Mills D (2004). "Advances in solar thermal electricity technology". Solar Energy. 76 (1–3): 19–31. Bibcode:2004SoEn...76...19M. doi:10.1016/S0038-092X(03)00102-6.
  10. ^ Zaslavsky, Dan (2006). "Energy Towers". PhysicaPlus. Israel Physical Society (7). Archived from the original on 2006-08-14. Retrieved 2007-03-13.
  11. ^ Zwirn, Michael J. (January 1997). Energy Towers: Pros and Cons of the Arubot Sharav Alternative Energy Proposal. Arava Institute for Environmental Studies. Retrieved on 2006-12-22.
  12. Zaslavsky, Dan (November, 1996). "Solar Energy Without a Collector". The 3rd Sabin Conference.